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Introduction 
While researching another aspect of Aaron 

Dennison’s work, I read the following in Copy of 
Biographical Sketch in Aaron Lufkin Dennison’s Hand 
Writing Taking the Period up to the Year 1849 of His 
Life (available from the NAWCC Library): 

“One of the first difficulties I encountered in 
this [watch repair] business was from the lack 
of any fixed standard of sizes which were in 
general use; every (different) manufacturer 
having a gauge of his own ... and no two 
agreeing ... This led me to devise a gauge 
upon which all the different parts of a watch 
could be accurately measured”. 
Although I knew of the common Dennison 

Mainspring Gauge I had never come across a gauge to 
measure “all the different parts of a watch”, and I 
wondered what it looked like. 

First I searched through my own library of about 
750 books on watches. There were a few vague 
references to Dennison inventing a gauge about 1840, 
which was a “Standard Gauge” or “The US Standard”, 
but nowhere was there a description of it. The only 
concrete statement I found was in a rather obscure 
book, N. B. Sherwood’s Watch and Chronometer 
Jeweling:  

“We now refer to Dennison’s combined gauge, 
an article indispensable to every watch-
maker, who, may by its use, size wire or plate 
to all the sizes indicated by any Stubb’s 
gauge, also the diameter of wheels and 
pinions, most perfectly. The prices is [sic] very 
moderate, when the wide range of sizes is 
considered.” 
But again there was no description. 
After that I tried the NAWCC Bulletin index and 

searching the internet. All I found were a few 
mentions of Dennison’s mainspring gauge and nothing 
at all relating to the more flexible combined gauge.  

My last attempt to find out about it was to post a 
message on the NAWCC Message Board. I got an 
instant reply from Dave Coatsworth, who posted 
photographs of this elusive gauge. And, as luck would 
have it, a couple of days later I found one for sale and 
bought it. Because both the mainspring gauge and this 
other gauge can be signed “US Standard” I will not use 
that term and, instead, refer to Dennison’s mainspring 
and combined gauges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

As Dennison knew about European gauges, this 
article will examine them first. Six mainspring gauges 
(one with two different scales) will be studied; the 
Martin, Montandon, Robert, Lepine, Ferret and Prenot 
gauges. These are the only gauges I know of and I 
presume they are the ones Dennison was referring to. I 
will assume the makers were rational people and the 
gauges they produced were based on sensible scales. 
However, most published tables indicate the gauges 
are irrational, having arbitrary scales which do not 
follow any obvious pattern. As a consequence it has 
been necessary to carefully examine them and discover 
the patterns that, in fact, form the basis of their 
designs. It turns out that these gauges are either 
French imperial (based on the French inch) or metric. 

I then look at Dennison’s combined gauge and his 
later (and simpler) mainspring gauge and show that 
both are English imperial, based on the English inch. 
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making backups of all my work. 



Mainspring Gauges and the Dennison Combined Gauge 

5 

European Mainspring Gauges 
At least six mainspring gauges were used in 

Europe, but it was hard to find out anything useful 
about them. The gauges I have information on are: 

Montandon: A description of the Montandon 
gauge (and a mention of the Robert gauge) is in 
another obscure book, Eugene Buffat’s History and 
design of the Roskopf watch. He wrote: 

“The scales or gauges used for the 
measurement of mainsprings in the Neuchâtel 
Mountains and in the Jura do not appear to 
have a scientific basis. They are measure-
ments created by manufacturers of main-
springs for their customers and consecrated by 
use. Thus the Montandon gauge (of the 
Montandon brothers, in Rambouillet, near 
Paris) is most known; it has 57 numbers 
above 0, and 9 below 0, for the heights, and 18 
numbers (from 0000 to 14) for diameters. The 
difference between each number in height is 
0.08 mm to No. 22, which is = 3 mm, and 0.10 
mm for numbers 23 to 57, which is = 6.5 mm. 
For the diameters, the difference is 1 mm 
between each number from 0000 to 0 and 0.5 
mm from 1 to 14. The Robert scale is just as 
conventional; in the past it was frequently 
used at La Chaux-de-Fonds. Currently metric 
measurements - which are far better - have 
supplanted these old gauges. It will not be 
long before they disappear from the scene, but 
it is good to know them, because many foreign 
supply houses still give their orders for 
mainsprings according to the scales 
Montandon or Robert”. 
My Montandon gauge, Figure 1, consists of a piece 

of steel sandwiched between two pieces of brass. It has 
mainspring heights from “9/0” to “57” and barrel 
diameters from “4/0” to “18”. It is hand made, with the 
notches filed out and the engraving done by hand. In 
contrast, the other gauges I have examined are simple 
brass plates with the notches cut by machine and 
regular, punched engraving, as in Figure 3.  

The Montandon gauge is obviously old, but I do 
not know how old. Tardy’s Dictionnaire des Horlogers 
Français lists Montandon frères from 1825 and notes 
that the company registered the trademark on my 
gauge, Figure 2, in 1863; so that is the earliest possible 
date.  

Stephen Katchur has provided me with 
photographs and measurements of a more recent 
Montandon gauge that he owns. It is a simple brass 
gauge and has heights from “10/0” to “25” and barrel 
diameters from “1” to “16”. The different ranges 
probably reflect the decreasing sizes of watches over 
the years. I have not included a photograph of this 
gauge because it is the same as Figure 3 in 
appearance. 

A third Montandon gauge is illustrated in a Henri 
Picard & Frère catalogue circa 1885 (reproduced in 
Ted Crom Horological Shop Tools 1700 to 1900). This 
will be discussed later. 

 
Figure 1 
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Robert: Unfortunately I have not seen the Robert 
gauge mentioned by Buffat, but it must be similar to 
those shown in Figures 1 and 3. It was made by Ulysse 
Sandoz Robert of La Chaux-de-Fonds, who was still 
making mainsprings in the 1930s; Figure 3a is an 
advertisement from the 1932 Swartchild catalogue  
(B177). 

However, my favourite repair book, Jendritzki’s 
The Swiss Watch Repairer’s Manual, has tables for the 
Robert gauge (and the Montandon gauge).  

Martin: The third gauge, Figure 3, is made by 
Martin in France, and the only reason I knew of it was 
because I have two of them in my collection. But then I 
found an description of it and how to use it in Watch 
Cleaning and Repairing edited by Bernard Jones, a 
book as obscure as Buffat’s: 

“There are so many different gauges for 
mainspring widths and thicknesses that it is 
best to buy a pair of gauges of some recognised 
standard, such as “Martin” or “Metric”, and 
in ordering quote them distinctly. ... The 
notches cut in the edges of the Martin gauge 
indicate the height of the spring, lever one side 
and Geneva’s the other. The sinks correspond 
with the strength for either lever or Geneva’s. 
For instance, a spring, strength 14, will be 
found to coincide in diameter with sink 14. 
Therefore, to find a spring suitable in strength 
for the barrel, place the latter over the sink 
which it fits, and select a spring to just fit the 
sink”. 
Nowhere have I found the term “Geneva’s” 

explained, but I assume it means watches with a 
cylinder escapement. Although hard to read in the 
photograph, the “scales” for Lever and Geneva’s are 
completely different, the Lever notches ranging from 
“1” to “35” and the Geneva’s from “10/0” (0000000000!) 
to “25”; for example, a Geneva’s “13” is about the same 
size as a Lever “9”, and a Geneva’s “25” equates to a 
lever “20”. However both scales have 35 sizes. 

Also, there is no size “0”, the gauge having sizes 
“2/0”, “1/0”, “1”, “2”; so “1/0” and “0” are the same 
thing. I mention this because the use of “1/0” is 
different in different gauges. If you look at Table 1 you 
will see that one gauge does not have a”1/0” and one 
has both a “1/0” and a “0”. 

Measuring the strength (thickness) of a 
mainspring is very crude. It assumes the barrels in 
watches make 4 turns in 32 hours and is based on 
watches using Geneva or Maltese Cross stop work, 
which only allows 4 turns. In this case the strength is 
related to the diameter of the barrel.  

Lepine: Don Ross replied to my enquiry on the 
NAWCC Message Board, referring me to an article in 
the Jewelers’ Circular and Horological Review (August 
27, 1902, page 88). This has another table for the 
Robert and Montandon gauges, but it also includes the 
fourth Lepine gauge. (It also mentions a Boley decimal 
gauge without providing any details, but I suspect it is 
more recent and so not really relevant.)  

 
 
 

I then found another table for the Robert, 
Montandon and Lepine gauges in Lexikon der 
Uhrmacherkunst by Carl Schulte. 

Again I have not seen a Lepine gauge, but an 
advertisement (discussed later) provides some more, 
but contradictory, information. 

Ferret and Prenot: The last additions to the list 
also came from Don Ross, who provided details of two 
gauges he owns, marked E. Ferret and Prenot. There 
is a Ferret mentioned by Buffat:  

“but they did not do the wheel-cutting and it 
was to the firm of Ferret, in Corbeil near 
Paris, that Roskopf sent the discs for the 
various wheels.”  
I do not know if this is the same person, but Don 

Ross also has a wheel gauge with the same signature.  
Unknown: Finally, the Henri Picard & Frère 

catalogue illustrates another gauge without any 
identification. This gauge has barrel sinks marked in 
millimetres and the text “Echelle au 1/10 de millum” 
(scale of 1/10 mm) referring to the height notches. It is 
apparent that the barrel sinks are not the same as any 
of the other gauges. This gauge may be the Boley 
gauge mentioned in the Jewelers’ Circular article, but 
because I have insufficient information I have not 
included this gauge in the following discussion. 

I have discovered nothing more about these 
gauges. Unlike for watchmakers, there are no lists of 
tool and parts makers to reference for information. 
And internet searching has revealed nothing. So we 
know the names on these gauges but we do not know 
anything else about their manufacture. In particular, 
when they were first made is a mystery. Certainly 
they were used for a long time; as late as 1957, the 
Lauris Watchmakers and Instrument Repairers Guide 
felt the need to state: 

“We only stock the metric gauge, as the 
Geneva gauge is generally considered 
superceded. ... The Geneva gauges used in 
Australia in past years were unsatisfactory, 
because in several important sizes the same 
reading would cover springs of different 
dimensions, and because the steps are 
uneven”. 

But which gauges existed in 1840?  
In one way it doesn’t matter. All six gauges 

considered here are functionally identical. All have 
notches on their edges to measure mainspring heights, 
and four of them have barrel sinks to determine 
mainspring strengths. So it is sensible to assume that 
the gauges Dennison saw were basically the same. 
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Strange Numbers and the Martin Strength Gauge 
The Jewelers’ Circular article also points out that 

manufacturers had switched to the metric system 
about 1886, but watchmakers continued to use the old 
gauges, creating “a deplorable state of affairs” and 
great confusion by not specifying which gauge they 
were using! In addition, the writer points out that the 
French and Rhenish inches were in use, both of which 
are different from the English inch. Indeed, there were 
many inches, four of which are: 

 English inch = 25.340 mm 
 Prussian inch = 26.148 mm 
 Rhenish inch = 26.18 mm 
 French inch = 27.072 mm 
Actually, according to the Wikipedia, the French 

law of 1799 for defining the metre states that one 
decimal metre is exactly 443.296 French lignes, which 
means a ligne is 27.06994875 mm, about 0.002 mm 
smaller than the above figure.  

The French inch was divided into 12 lignes and 
each ligne was divided into 12 douzièmes, ¹⁄₁₄₄th of an 
inch. Of course it is possible to sub-divide each 
douzième 12 times giving ¹⁄₁₇₂₈th of an inch. That is, 1 
douzième is about 0.18799 mm and ¹⁄₁₂ douzième is 
about 0.01567 mm.  

These fractions look strange, but they are 
perfectly sensible. If I measure something and it is 
0.37598 mm you would think it a ridiculous size. But it 
is exactly 2 douzièmes and perfectly sensible. Likewise 
the common ¹⁄₃₂ and ¹⁄₆₄ inch are sensible even though 
they are 0.791875 and 0.3959375 mm, and 0.2 mm is 
sensible although it is 0.00789265982 inch! 

Such fractions are not restricted to the French. 
The common Lancashire watch sizes are based on 1/30 
of an English inch, and this fraction was also used for 
measuring crystals. And the Lancashire pillar gauge, 
for measuring the heights of pillars, is based on 1/144 
of an English inch. (A useful summary of measuring 
scales can be found in Vaudrey Mercer The 
Frodshams, the Story of a Family of Chronometer 
Makers) 

So a ridiculous number in one measuring system 
may be a sensible number in another system. Or it 
may not. 

In the following we will need to measure to an 
accuracy of about 0.01 mm, or about ¹⁄₂₅₀₀ inch and 
¹⁄₂/12 douzième, so don’t be surprised when apparently 
peculiar fractions appear. 

The common French imperial measuring gauge is 
the douzième gauge, Figure 5. This is a magnifying 
gauge; the measurement range is ¹⁄₂ French inch and 
the scale is marked 0 to 72 douzièmes; it is magnified 
by about 3.7 : 1. As a result it is possible to measure to 
an accuracy of ¹⁄₂ a douzième. Metric measuring gauges 
were also made with a measurement range of 12 mm 
and the scale marked in 0.1 mm divisions which can be 
read to 0.05 mm. 

But these are not accurate enough for the height, 
let alone the thickness of a mainspring. More accurate 
measurement requires a much greater magnification.  

 

 
Figure 5 

 
Figure 6 
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For example, the ordinary metric micrometer, 
which has two turns of the thimble for each millimetre 
and the thimble divided 0 to 50, has a magnification of 
about 82 : 1 with the scale marked in 0.01 mm 
divisions which can be read to 0.005 mm. 

Although not as convenient, a douzième 
micrometer is also practical; for example, the thimble 
makes 3 turns for each ligne and it is divided into 0 to 
48 divisions for ¹⁄₁₂ douzièmes. 

Another potentially more accurate measuring 
gauge is the slit gauge, which is often called a pivot 
gauge. For example, Figure 6 shows a Martin 
mainspring strength gauge. In this gauge the range 
0.05 mm to 0.30 mm is spread out over 59 mm, or a 
very large magnification of 236 : 1. This is necessary, 
because the human eye cannot discriminate between 
such small distances and it would be impossible to 
make such narrow notches.  

A slit gauge is a linear gauge made of two pieces 
of metal with perfectly straight edges. These are 
clamped in position so that the two parts meet at one 
end and are separated at the other end by M 
(millimetres or douzièmes).  

If the length of the gauge is L then an object m 
wide will fit at 

l = (L/M)m 
from the end. 

For example, if L = 100 mm and M = 1 mm then 
the magnification is 100 : 1 and if the object being 
measured is 0.17 mm wide it will fit the slit l = 17 mm 
from the end. 

The Martin strength scale is quite regular, but the 
scale numbers are reversed. The smallest number, 
“5/0”, corresponds to 0.30 mm and the largest number 
“21” to 0.05 mm. But there is a simple relationship: the 
Martin number S corresponds to: 

M = 0.01(21 - S) + 0.05 
or 

M = -0.01S + 0.26 mm 
interpreting “1/0” as 0 and “5/0” as -4.  

Interestingly, de Carle’s Watch and Clock 
Encyclopedia has a table for this gauge which is out by 
one; according to his book Martin number S 
corresponds to  

M = -0.01S + 0.27 mm 
 
 
 

Indeed, most tables in books have errors and de Carle 
is not alone in making mistakes. 

Numbers like 0.26 mm seem strange. But this is 
partly because mathematics favours zero whereas 
people tend to favour one. So the above mathematical 
formula says “starting at zero, the size S is 0.26 mm 
...”. However, the human who designs a gauge might 
well think “starting at one ...” in which case the correct 
formula is 

M = -0.01(S-1) + 0.25 mm 
and 0.25 mm is much more sensible. So what may 
seem a strange formula can be very practical. 

Martin’s slit gauge has probably always been 
metric and never a douzième gauge, because it is most 
likely a relatively recent replacement for the original, 
and very limited barrel diameter gauge.  

Such slit gauges are of dubious value. When very 
narrow, damage, caused by forcing a mainspring in, 
corrosion and dirt reduce its accuracy. And, of course, 
if it has not been assembled perfectly the scale will be 
wrong. Even if it is correct the readings can vary. Both 
my Martin slit gauges are correct, but a size “2” 0.24 
mm mainspring (measured with a micrometer) can be 
pushed down to the size “5” 0.21 mm calibration. So 
unless the mainspring is inserted with almost no 
pressure, the reading will be wrong. But if I am too 
gentle it will record less than 0.24 mm! 

Figure 7 is an English imperial slit gauge which 
measures in ¹⁄₁₀₀₀th inch to ²⁵⁰⁄₁₀₀₀ inch; this illustration 
is from Henry Abbott’s American Watchmaker and 
Jeweler, an Encyclopedia. A douzième slit gauge is 
equally simple. For example, a 6 inch gauge with a 
maximum width of ¹⁄₂ ligne and 72 divisions will 
accurately measure ¹⁄₁₂ douzièmes. 

The inverse of a slit gauge is also quite common. 
The obvious examples are the tapered rod used for 
sizing rings and the much smaller tapered rod used to 
measure watch jewel holes.  

Similarly, it is possible to taper and graduate a 
piece of flat steel to measure either ¹⁄₁₀₀ mm or ¹⁄₁₂ 
douzièmes. Such a gauge can be filed into a series of 
flat sections and used as a go-nogo gauge. 

So numbers like 6¹⁄₂/12 and 47/12 douzièmes are 
not only sensible, but can be measured as easily as 
0.08 and 1.24 mm.  

 
 
 

 
Figure 7 
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Mainspring Heights: Symbols or Numbers? 
Table 1 gives the scales for mainspring heights for 

four European gauges. I have used Jendritzki’s data 
for Montandon (Mont) and Robert, to which I have 
added the Martin Geneva’s sizes (MG) from de Carle’s 
Watch and Clock Encyclopedia, Martin Lever sizes 
(ML) measured from my gauges, and Lepine sizes from 
the Jewelers’ Circular article. 

These are probably nominal sizes because they 
are go-nogo gauges. What matters is that a mainspring 
fits the correct notch and will not fit the next smaller 
notch; it does not matter if there is a little play. 
Indeed, my actual gauges produced less attractive 
figures and I have rounded the Martin Lever sizes.  

For example, if the gauge measures 1.84 mm then 
the size cannot be 1.85 mm because a spring of that 
size will not fit; and so it should be recorded as 1.80 
mm. However, errors in manufacture and measuring 
of these notches means there is considerable doubt and 
it is quite likely that such a notch should be recorded 
as 1.85 mm. 

The Lepine sizes have been simplified a bit. For 
example, the size “7/0” is given for 0.80, 0.85, and 0.95 
mm; the Jewelers’ Circular table does not include 0.90 
mm. As this must also be a go-nogo gauge, the notch 
must be at least 0.95 mm wide to accommodate these 
sizes, and so I have only included the largest 
measurement in the table. 

In Table 1 I have included all metric sizes from 
0.60 to 3.25 in steps of 0.05 mm. Thus the regularity or 
otherwise of a scale can be seen directly from the 
spacing of the scale numbers. 

What is clear is that the scale “numbers” appear 
to be symbols and not numbers. Numbers follow the 
rules of arithmetic, and so do metric and imperial 
measurements: 2 + 2 = 4, 4 mm is twice as long as 2  
mm, and so on. But the “numbers” on these 
mainspring gauges seem not to have any numerical 
meaning.  

Take the Martin Geneva’s scale. “1/0” corresponds 
to 1.15 mm and “1” to 1.25 mm; it is 0.1 mm larger. So 
“2” should be 0.1 mm larger, or 1.35 mm, which it is. 
But “3” is not 1.45 mm as we would expect, but only 
1.40 mm. A quick look at the table and it becomes 
obvious that there is no pattern; all five European 
gauges make arbitrary jumps from one size to another. 
So we cannot describe them as metric gauges. The 
fundamental principle of a metric gauge is that it 
measures millimetres and obeys the laws of 
arithmetic; these gauges do not.  

But are they symbols? 
Table 2 gives Montandon mainspring heights from 

Jendritzki (Jend), Buffat, the Jewelers’ Circular 
article (JC), Schulte (Sch), Stephen Katchur (Katch) 
and my gauge (Mine).  

Stephen Katchur, Don Ross and I found it difficult 
to measure our gauges because some of the notches are 
not square, and we got different readings depending on 
what part of the notch we tested. (Which introduces 
more doubt. If a mainspring fits a notch but  
 

 
 

Mainspring Heights 
mm M L M G Mont Robert Lepine 
0.60   9/0 3/0  
0.65    2/0 10/0 
0.70   8/0 1/0 9/0 
0.75   7/0 0 8/0 
0.80   6/0 1  
0.85  4/0  2  
0.90   5/0 3  
0.95  3/0  4 7/0 
1.00   4/0 5  
1.05  2/0 3/0 6 6/0 
1.10   2/0 7  
1.15  1/0  8 5/0 
1.20      
1.25  1 1/0 9 4/0 
1.30    10  
1.35  2 1 11 3/0 
1.40 1 3 2 12  
1.45   3 13 2/0 
1.50 2 4    
1.55   4 14 0 
1.60 3 5    
1.65  6 5 15  
1.70 4 7 6 16  
1.75    17 1 
1.80 5 8 7 18 2 
1.85    19  
1.90 6 9 8  3 
1.95  10 9 20 4 
2.00 7   21 5 
2.05  11 10 22 6 
2.10 8   23 7 
2.15  12    
2.20 9 13 11 24 8 
2.25   12 25  
2.30 10 14 13 26 9 
2.35    27  
2.40  15 14 28 10 
2.45      
2.50 11 16 15 29 11 
2.55 12 17 16 30  
2.60 13 18  31  
2.65   17 32 12 
2.70 14 19 18 33  
2.75      
2.80 15 20 19 34 13 
2.85   20 35 14 
2.90 16 21 21 36  
2.95  22  37 15 
3.00 17 23 22 38 16 
3.05      
3.10 18 24 23 39  
3.15    40  
3.20 19 25 24 41  
3.25    42  
3.30 20     
3.35      
3.40 21     
3.45      

Table 1 
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will not go to the bottom, is it that size or the next size 
up?) Note that the table omits Katchur’s size “10” 
because the “10” and “11” notches on his gauge are the 
same size. Notches “9/0” and “8/0”, and “21” and “22” of 
his gauge are also nearly the same size, but I was able 
to fit them into the table. So the gauge has been made 
incorrectly and is unreliable. It is not alone! 

It is apparent that all these scales have irregular 
spacing and they cannot be metric.  

But according to Buffat, as quoted above, 
Montandon’s gauge is regular, and for numbers S from 
“9/0” to “22” the mainspring height increases regularly 
by 0.08 mm. In fact Montandon’s “1” should be 1.32 
mm, but Jendritzki says it is 1.35 mm. Only a small 
difference, but for number “15” Buffat’s formula gives 
2.44 mm, which means Jendritzki has put this number 
in the wrong row of the table. This applies to several of 
the irregular entries in Table 2. And the Jewelers’ 
Circular article and my gauge give different values 
again! 

All the tables I have seen, including my Table 2, 
match the scale numbers with nice, convenient 
numbers of millimetres. But what if an apparent 
irregularity has been introduced simply because they 
have been rounded to the nearest convenient number of 
millimetres? Perhaps they appear to be irregular when 
they are not.   

Why millimetres anyway?  
As we have seen, the Swiss and the French used a 

perfectly good measuring system based on the French 
inch. A douzième, 1/144th of a French inch is 0.18799 
mm. So 5/12 douzième is 0.07833 mm, which is very 
close to 0.08 mm, differing by only 0.00167 mm. 
Indeed, the Montandon numbers can just as well be 
based on douzièmes as on millimetres.  

If a scale is regular then the problem is to find the 
values of a and b in the formula  

M = aS + b  
where S is the scale number and M is the 
corresponding width of the notch in of millimetres or 
douzièmes.  

In general, to do this we need two values from the 
table which we know are correct. Unfortunately we do 
not know which these are; indeed none may be correct! 
But if we can choose two values then we can construct 
a uniform table where a is the increment, the 
difference between consecutive scale numbers and b is 
the base, the size of the scale “0” notch. 

Consider the Montandon mainspring heights in 
Table 2. All the scales are different and all have 
irregular jumps from one scale size to the next. (Also, 
the Schulte table has omitted size 8/0 and some of the 
sizes from 9/0 to 1/0 may be wrong.)  

If we choose the values for “9/0” and “24”, which 
are the same for three of the published tables and my 
gauge, then: 

3.20 = 24a + b 
0.60 = -8a + b 

where 1/0 = 0, 2/0 = -1, ... 9/0 = -8. Subtracting we get: 
2.60 = 32a 

and so  
a = 2.6/32 mm 

Substituting this value of a in the second equation 
gives: 

Montandon Mainspring Heights 
mm Jend Buffat JC Sch Katch Mine 
0.55     10/0  
0.60 9/0 9/0 9/0  9/0 9/0 
0.65   8/0 9/0 8/0 8/0 
0.70 8/0 8/0 7/0 7/0   
0.75 7/0 7/0   7/0 7/0 
0.80 6/0  6/0 6/0   
0.85  6/0  5/0 6/0 6/0 
0.90 5/0 5/0  4/0  5/0 
0.95   5/0  5/0  
1.00 4/0 4/0 4/0  4/0 4/0 
1.05 3/0   3/0   
1.10 2/0 3/0 3/0 2/0 3/0 3/0 
1.15  2/0 2/0  2/0  
1.20     1/0 2/0 
1.25 1/0 1/0    1/0 
1.30  1 1/0 1/0 1 1 
1.35 1  1    
1.40 2 2 2 1 2 2 
1.45 3  3 2 3  
1.50  3  3  3 
1.55 4 4 4    
1.60    4  4 
1.65 5 5  5 4 5 
1.70 6 6 5  5  
1.75   6 6 6 6 
1.80 7 7  7  7 
1.85     7  
1.90 8 8 7 8  8 
1.95 9 9 8  8  
2.00    9  9 
2.05 10 10 9 10 9 10 
2.10  11 10 11 11 11 
2.15       
2.20 11 12 11 12 12 12 
2.25 12  12    
2.30 13 13 13 13  13 
2.35  14     
2.40 14  14 14 13 14 
2.45  15   14 15 
2.50 15 16 15 15 15 16 
2.55 16   16   
2.60  17 16 17 16 17 
2.65 17  17    
2.70 18 18  18 17 18 
2.75  19     
2.80 19  18 19 18 19 
2.85 20 20 19 20 19 20 
2.90 21 21 20 21  21 
2.95   21  20  
3.00 22 22  22 21 22 
3.05     22  
3.10 23 23 22 23  23 
3.15   23 24 23  
3.20 24 24 24   24 
3.25     24  
3.30       
3.35     25  

Table 2 
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0.6 = -20.8/32 + b   
and so 

b = 19.2/32 + 20.8/32 = 40/32 mm 
Therefore 

M = (2.6/32) S + 40/32 mm 
or 

M = 0.08125S + 1.25 mm 
Graph 1, at the end of this article, shows this 

formula. What is clear from it is that my gauge, 
Katchur’s gauge (despite its errors), Jendritzki’s 
values and the formula are all very close to each other.  

Now a = 0.08125 mm is very close to ⁵⁄₁₂ douzièmes 
(0.07833 mm, the difference being only 0.0029 mm), 
and b = 1.25 mm is very close to ⁸⁰⁄₁₂ or 6⁸⁄₁₂ douzièmes. 
In other words we could use: 

M = (5/12)S + 80/12 douzièmes 
Alternatively we could choose other values to 

work out the formula. If we use the values for “1” (1.35 
mm) and “22” (3.00 mm) we get: 

M = 0.07857S + 1.2714 mm 
And other combinations will produce similar but 

different results. However, all these formulae fit well 
with the data.  

The values of a and of b are important.  
As a is the increment from one size to the next it 

needs to be a sensible number; it would be ridiculous 
to think that the designer of this gauge used an 
increment of 0.08125 or 0.07857 mm! However, an 
increment of ⁵⁄₁₂ douzièmes or 0.08 mm is reasonable.  

Likewise, if the gauge is created starting at the 
scale number “0”, then b needs to be a sensible value. 
Of course, the person who designed the Montandon 
gauge may have started from any scale number and so 
some variation in b is possible. In the first equation b 
is 1.25 mm, which is almost a sensible figure if the 
scale is metric; but that system does not normally use 
fractions like ¹⁄₄. It is also sensible for a douzième scale 
because 6⁸⁄₁₂ douzièmes is 1.2533 mm. In the second 
equation b = 1.2714 is not a sensible metric number, 
but it is very close to 6⁹⁄₁₂ douzièmes. 

In principle there is an easier and much better 
way to determine the values of a and b, the method of 
least-squares curve fitting.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This determines a and b for the straight line that 
minimises the total deviations of the actual data from 
the straight line and so produces the line that is the 
best fit to the data. Spreadsheets include automatic 
calculation and graphing of least-squares curves. If we 
use this technique with my gauge in Table 2 we get: 

M = 0.0809S + 1.3202 mm 
which is near to: 

M = (5/12)S + 84/12 douzièmes 
But although a might be 0.08 mm, the value of b 

is definitely not nice and the metric formula is 
unlikely. When drawn, this least-squares line is 
almost indistinguishable from the first formula and so 
I have not included it in Graph 1. 

Two points need to be made. First, we should 
assume the makers of these gauges were rational 
people and their scales are regular and based on 
sensible values of a and b. And second, as will become 
clearer as we examine more cases, the gauges are far 
from perfect. In Graph 1 we can see small deviations of 
my gauge from the ideal line which indicate errors in 
manufacture (or errors in my measurements). Graph 2 
shows that the three published tables and my gauge 
are all different from each other. 

These variations mean that both manual 
calculation of formulae and least-squares curve fitting 
produce abstract, ideal lines which frequently have 
irrational values for a and b. However, small changes 
in the values of a and b are possible while still having 
formulae that satisfy the gauges, and we can choose 
values that make sense in the metric or imperial 
systems, or both.  

The value of a is most restricted because it is 
multiplied by the scale number. For example, in the 
above formulae changing a by ¹⁄₁₀₀ mm from 0.0809 to 
0.09 will change size “24” from 3.2618 mm to 3.4802 
mm, an increase of about 0.22 mm. This is far too large 
to be acceptable. So, although we can try “nice” 
formulae they must be very similar to the abstract 
ideal. 
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Montandon Mainspring Heights 
The above discussion has been included because it 

sets out the basic principles. However the formulae are 
wrong. The problem with them is that they are based 
on Table 2 which uses an increment of 0.05 mm when, 
according to Buffat, Montandon’s gauge uses two 
different increments of 0.08 and 0.10 mm. And so the 
rounding that was necessary to fit the scale numbers 
into Table 2 has introduced errors leading to the 
strange values of a and b, causing at least some of the 
apparent differences between the formula and the 
published tables. 

Table 3 gives the actual sizes of my gauge in 
millimetres for each scale number. (It has been 
abbreviated, the scale continuing from “44” to “57”.) 
Graph 3 shows the values in Table 3 and that Buffat is 
correct. That graph has the values from my gauge with 
the two least-squares lines necessary to fit the data; 
they clearly show the change in increment at size “22”.  

By using Table 3 instead of Table 2, and noting 
that the gauge is different above and below scale 
number “22” we get the two formulae: 

M =  0.08(S - 22) + 3.0 mm, S = “9/0” to “22” 
M =  0.1(S - 22) + 3.0 mm, S = “23” to “57” 

Or, to express them more simply: 
M =  0.08S + 1.24 mm, S = “9/0” to “22” 
M =  0.1S  + 0.80 mm, S = “23” to “57” 

These formulae give the fifth column in Table 3 
(Buffat mm) corresponding to the scale numbers in 
the first column. With the exception of b = 1.24 mm 
these appear to be sensible metric equations. (Actually 
we can substitute b = 1.25 without making much 
difference. Then the scale runs from 0.61 mm to 4.31 
mm.) 

A French imperial gauge is equally likely. 
Columns 3 and 4 of Table 3 give the notch sizes 
corresponding to: 

M = 5/12S + 80/12 douzièmes, S = “9/0” to 
“22” 

M = 6¹⁄₂/12S + 48/12 douzièmes, S = “23” to 
“57” 

In order to compare the metric and imperial 
formulae, we need to examine the differences between 
the ideal formula and my gauge. There are three 
points: 

(a) The average difference between my gauge 
and the imperial formula is about 1¹⁄₂/12 
douzièmes or 0.024 mm. The largest 
difference, at scale number “56”, is about 
4¹⁄₂/12 douzièmes or 0.069 mm. 

(b) The average difference between my gauge 
and the metric formula is 0.018 mm. The 
largest difference is 0.050 mm. 

(c) The average difference between the imperial 
and metric formulae is 0.015 mm. The largest 
difference is 0.041 mm at scale number “57”. 

The majority of the differences between my gauge 
and the two formulae are due to irregularities in the 
gauge, and there is a high value of 0.069 mm due to 
the “56” notch being cut too narrow. However, the 
difference between my gauge and the imperial formula 

increases from 0.02 to 0.04 mm for scale numbers “45” 
to “57”.  

 
 
 

Montandon Mainspring Heights 

Scale Gauge 
mm 

¹⁄₁₂ 

Douz 
Douz 
mm 

Buffat 
mm 

9/0 0.58 40 0.63 0.60 
8/0 0.64 45 0.71 0.68 
7/0 0.73 50 0.78 0.76 
6/0 0.83 55 0.86 0.84 
5/0 0.89 60 0.94 0.92 
4/0 1.02 65 1.02 1.00 
3/0 1.08 70 1.10 1.08 
2/0 1.18 75 1.18 1.16 
1/0 1.25 80 1.25 1.24 
1 1.32 85 1.33 1.32 
2 1.41 90 1.41 1.40 
3 1.49 95 1.49 1.48 
4 1.58 100 1.57 1.56 
5 1.65 105 1.65 1.64 
6 1.74 110 1.72 1.72 
7 1.79 115 1.80 1.80 
8 1.92 120 1.88 1.88 
9 1.98 125 1.96 1.96 

10 2.05 130 2.04 2.04 
11 2.12 135 2.12 2.12 
12 2.22 140 2.19 2.20 
13 2.30 145 2.27 2.28 
14 2.39 150 2.35 2.36 
15 2.45 155 2.43 2.44 
16 2.52 160 2.51 2.52 
17 2.62 165 2.59 2.60 
18 2.72 170 2.66 2.68 
19 2.79 175 2.74 2.76 
20 2.85 180 2.82 2.84 
21 2.91 185 2.90 2.92 
22 2.98 190 2.98 3.00 
23 3.09 196¹⁄₂ 3.08 3.10 
24 3.19 203 3.18 3.20 
25 3.26 209¹⁄₂ 3.28 3.30 
26 3.38 216 3.38 3.40 
27 3.45 222¹⁄₂ 3.49 3.50 
28 3.58 229 3.59 3.60 
29 3.68 235¹⁄₂ 3.69 3.70 
30 3.78 242 3.79 3.80 
31 3.87 248¹⁄₂ 3.89 3.90 
32 3.98 255 4.00 4.00 
33 4.09 261¹⁄₂ 4.10 4.10 
34 4.21 268 4.20 4.20 
35 4.31 274¹⁄₂ 4.30 4.30 
36 4.42 281 4.40 4.40 
37 4.49 287.5 4.50 4.50 
38 4.56 294 4.61 4.60 
39 4.69 300.5 4.71 4.70 
40 4.80 307 4.81 4.80 
41 4.94 313.5 4.91 4.90 
42 5.03 320 5.01 5.00 
43 5.12 326.5 5.12 5.10 
44 5.22 333 5.22 5.20 

Table 3 
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The average differences give a good estimate of 

the discrepancy between the gauge and the formulae 
and between the two formulae. These are very small 
and either formula is a very good fit to the gauge, 
although the metric formula looks “nicer”.  

Graph 4, which includes the full range of sizes 
from “9/0” to “57”, clearly shows that both formulae fit 
the gauge very well. However, the graph is too small 
and interesting detail is hidden. Graph 5 shows a 
small part of Graph 4 expanded to reveal the 
variations between my gauge and the formulae.  

And so we have no obvious reason to choose 
between the metric and imperial formulae for the 
Montandon mainspring heights. Either can be used 
and the gauge constructed with simple measuring 
tools. 

So is the Montandon gauge metric or imperial? 
Figure 8 shows a “Montandon Fusee” gauge 

(reproduced from the Henri Picard & Frère catalogue 
circa 1885). This looks like my gauge, having similar 
scales for the mainspring heights and, as we will see, 
for the barrel sinks. So it may be the same as the 
gauge described above, but I have no concrete 
information about it. 

However, except for a few special watches the 
Swiss rarely used fusees after about the middle of the 
nineteenth century. So it is very likely that this gauge 
was first made about the time Dennison devised his 
gauge, or earlier. In which case it is almost certain 
that it would use a French imperial scale.  

 
Figure 8 
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Martin Mainspring Heights 
 Table 4 gives both the Lever and Geneva’s scales 

from my two Martin gauges, together with de Carle’s 
values for the Geneva’s scale.  

It is very difficult to measure the width of the 
notches accurately, in part because it seems they are 
not exact rectangles, and the table gives my best 
estimates rounded to the nearest 0.05 mm.  

These two gauges provide a cautionary tale. Both 
have notches which are obviously incorrectly cut and 
many notches show discrepancies. So it is doubtful if 
they could be relied upon to any better than 0.1 mm. It 
is apparent that the gauges were carelessly made and 
this must cast doubt on all mainspring gauges; at best 
they will give a rough approximation. 

Lever scale: The first gauge, which is also in 
Table 1, has a large gap between “10” and “11”, and 
“11” to “13” are clumped together. Gauge 2 is much 
more uniform, but the notches for “21” and “22”, and 
for “23” and “24”, are the same size!  

After allowing for these obvious errors, the Lever 
heights appear to be metric: 

 M = 0.1S + 1.3 mm 
fitting within about 0.05 mm throughout the scale. 

But the values of a and b are very close to 6¹⁄₂/12 
and 83/12 douzièmes: 

M = (6¹⁄₂/12)S + 83/12 douzièmes 
and this imperial formula fits almost as well. As the 
gauges have major errors, there is no obvious reason to 
choose one formula over the other, although the metric 
formula is admittedly “nicer”. 

Graph 6 clearly shows the errors in my gauges, 
particularly that from size “22” my gauges are almost 
consistently under size. 

Geneva’s scale: The Geneva’s heights are equally 
erratic. My gauges are different from each other and 
both are different from de Carle’s scale in Table 1. 
Also, my second gauge has the notches for “6/0” and 
“5/0”, for “3/0” and “2/0”, and for “20” and “21”, about 
the same size. Using the whole range we get for gauge 
1: 

M = 0.08235S + 1.24118 mm 
and for gauge 2: 

M = 0.07647S + 1.23824 mm 
and for de Carle’s data: 

M = 0.08393S + 1.10179 mm 
Although 

M = 0.08S + 1.24 mm 
is possible, I think a better option is: 

M = (5/12)S + 78/12 douzièmes 
which gives as good a fit as the other formulae. 

Graph 7 illustrates the fact that the two gauges 
and de Carle’s values deviate considerably from the 
formula.  

Because there is so much latitude in designing 
suitable formulae, it is easy to miss the obvious. In 
this case it is that the last formula is almost identical 
to the formula for the small sizes of the Montandon 
gauge, the only difference being that b is 78/12 instead 
of 80/12; but 2/12 douzièmes is only 0.031 mm.  

 

Indeed, it is inevitable that we decide these two 
gauges are one and the same, especially as the scale 
values are identical. 

Graph 14 compares the mainspring heights of the 
different gauges. In it, the horizontal scale values are 
meaningless; the metric sizes of the seven gauges have 
been aligned with each other and the individual scales 
have been ignored. The Montandon and Martin 
Geneva’s heights are represented by a single line 
because they are, despite the 2/12 douzièmes 
difference, superimposed on each other. The Ferret 
and Lepine gauges are also identical, as we will see.  

 
 

Martin Mainspring Heights 
Lever Geneva’s 

Scale G 1 
mm 

G 2 
mm Scale Carle 

mm 
G 1 
mm 

G 2 
mm 

1 1.40 1.35 10/0  0.50 0.55 
2 1.50 1.45 9/0  0.60 0.60 
3 1.60 1.60 8/0  0.65 0.65 
4 1.70 1.65 7/0  0.70 0.70 
5 1.80 1.80 6/0  0.75 0.80 
6 1.90 1.95 5/0  0.80 0.80 
7 2.00 2.00 4/0 0.85 0.90 0.90 
8 2.10 2.10 3/0 0.95 1.00 0.95 
9 2.20 2.20 2/0 1.05 1.10 0.95 

10 2.30 2.30 1/0 1.15 1.20 1.10 
11 2.50 2.40 1 1.25 1.30 1.25 
12 2.55 2.50 2 1.35 1.40 1.35 
13 2.60 2.60 3 1.40 1.45 1.45 
14 2.70 2.70 4 1.50 1.55 1.50 
15 2.80 2.85 5 1.60 1.60 1.60 
16 2.90 2.90 6 1.65 1.65 1.65 
17 3.00 3.00 7 1.70 1.75 1.70 
18 3.10 3.10 8 1.80 1.80 1.80 
19 3.20 3.20 9 1.90 1.90 1.85 
20 3.30 3.30 10 1.95 1.95 1.95 
21 3.40 3.45 11 2.05 2.05 2.00 
22 3.50 3.45 12 2.15 2.15 2.05 
23 3.60 3.60 13 2.20 2.25 2.20 
24 3.70 3.60 14 2.30 2.35 2.30 
25 3.75 3.75 15 2.40 2.45 2.40 
26 3.85 3.80 16 2.50 2.50 2.45 
27 3.95 3.95 17 2.55 2.60 2.50 
28 4.05 4.05 18 2.60 2.70 2.60 
29 4.20 4.20 19 2.70 2.75 2.70 
30 4.25 4.30 20 2.80 2.80 2.80 
31 4.45 4.40 21 2.90 2.90 2.80 
32 4.50 4.45 22 2.95 3.00 2.90 
33 4.60 4.60 23 3.00 3.10 3.00 
34 4.70 4.70 24 3.10 3.15 3.10 
35 4.80 4.75 25 3.20 3.30 3.15 

Table 4 
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Robert Mainspring Heights 
The only information I have found regarding the 

Robert gauge is in the tables provided by Jendritzki 
and Schulte, see Table 5. 

 It is easy to work out a formula: 
M = 0.05889S + 0.77667 mm 

and from this it is reasonable to choose: 
M = 0.06S + 0.75 mm 

which fits quite well. 
In contrast, there is no obvious imperial formula. 

The best is: 
M = (3³⁄₄/12)S + 48/12 douzièmes 

Although b = 4 douzièmes is fine, a = 3³⁄₄/12 douzièmes 
seems unlikely.  

The formula and how well it fits the Robert gauge, 
Graph 8, supports the view that it should be 
considered a metric gauge. 

But there is a serious problem. What if 
Jendritzki’s and Schulte’s figures are the result of 
rounding imperial values to suitable metric 
counterparts? If they have done this, then it is quite 
possible that the Robert heights are actually French 
imperial. It is impossible to decide without measuring 
one or more real gauges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Robert Mainspring Heights 

Scale Jendritzki Schulte 
3/0 0.60 0.65 
2/0 0.65 0.70 
1/0 0.70  
0 0.75 0.75 
1 0.80 0.80 
2 0.85 0.85 
3 0.90 0.90 
4 0.95 1.00 
5 1.00 1.05 
6 1.05 1.10 
7 1.10 1.15 
8 1.15 1.20 
9 1.25 1.30 
10 1.30 1.35 
11 1.35 1.40 
12 1.40 1.45 
13 1.45 1.50 
14 1.55 1.60 
15 1.65 1.65 
16 1.70 1.70 
17 1.75 1.75 
18 1.80 1.80 
19 1.85 1.90 
20 1.95 1.95 
21 2.00 2.00 
22 2.05 2.05 
23 2.10 2.10 
24 2.20 2.20 
25 2.25 2.25 
26 2.30 2.30 
27 2.35 2.35 
28 2.40 2.40 
29 2.50 2.50 
30 2.55 2.55 
31 2.60 2.60 
32 2.65 2.65 
33 2.70 2.70 
34 2.80 2.80 
35 2.85 2.85 
36 2.90 2.90 
37 2.95 2.95 
38 3.00 3.00 
39 3.10 3.10 
40 3.15 3.15 
41 3.20 3.20 
42 3.25  

Table 5 
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Lepine and Ferret Mainspring Heights 
Initially, the only information about the Lepine 

gauge came from two published tables of heights. 
There was no information about barrel sinks, although 
it is reasonable to assume it would have them. 

The Ferret gauge, Figure 9 a, is very interesting 
because it appeared to be closely related to the Lepine 
gauge. This was then confirmed by Figure 9 b which is 
from the Henri Picard & Frère catalogue circa 1885. 
The two gauges are identical, but the second one is 
marked “Montandon Lepine”.  

Ferret’s signature, Figure 10, is an “E” overlap-
ping an “F”. It appears on another gauge owned by 
Don Ross together with the text “ANE MON GUERRE 
FERRET SUCCR”, but I have not been able to find out 
anything about either Guerre or his successor Ferret. 
(The word echelle on this gauge is the French word for 
scale.) However we can conclude that Ferret, like 
Picard, was a tool maker and not a mainspring manu-
facturer. 

Ferret’s gauge has a set of notches on the left side 
which I first thought were completely different; the 
scale appears to be reversed with size “0” being the 
largest notch and scale “14” the smallest. Also, there is 
no scale “1” notch! However, the Montandon gauge in 
Figure 9 b shows that these sizes are actually “0” 
(“1/0”) to “14/0” and part of the main set of notches on 
the other side of the gauge. 

Looking at just the Lepine heights given in the 
books, Table 6 and Graph 9, the Jewelers’ Circular 
table for the Lepine gauge has great irregularity, the 
increment between two numbers varying from 0.05 to 
0.20 mm. However Schulte’s table is much more 
regular and produces a very nice formula: 

M = (6/12)S + 96/12 douzièmes 
or 

M = (1/2)S + 8 douzièmes 
The corresponding metric formula is: 

M = 0.094S + 1.496 mm 
and so, as far as I can tell, there is nothing to suggest 
this scale is metric.  

Although we can be confident that a = ⁶⁄₁₂ 
douzième, the value of b is less certain because both 
tables are the result of forcing the gauge into a metric 
table. 

Don Ross’s measurements of Ferret’s mainspring 
heights from “1” to “25”, Table 6, also fit  

M = (6/12)S + 96/12 douzièmes 
and this is shown on Graph 10. That is, Ferret’s gauge 
almost exactly fits the Lepine size “1”, “2” ... “16” and 
beyond. Given the doubt associated with the Lepine 
tables and the measurement of the Ferret gauge, we 
can be confident that both use the same scale for 
heights. 

But adding the small sizes from “14/0” to “2/0” 
creates a problem, because attempting to fit a single 
line to the values is not satisfactory. However, as with 
the Montandon heights, two good formulae fit quite 
well: 

M = 3/12S + 66 douzièmes, S = 14/0 to 9/0 
M = 6/12S + 96 douzièmes, S = 8/0 to 25 

 
Lepine Heights Ferret Heights 

Scale JC Schulte Scale Gauge 
   14/0 0.42 
   13/0 0.44 
   12/0 0.49 
   11/0 0.55 

10/0 0.65 0.65 10/0 0.58 
9/0 0.70 0.70 9/0 0.65 
8/0 0.75 0.85 8/0 0.79 
7/0 0.95 0.90 7/0 0.87 
6/0 1.05 1.05 6/0 0.99 
5/0 1.15 1.10 5/0 1.07 
4/0 1.25 1.20 4/0 1.19 
3/0 1.35 1.35 3/0 1.33 
2/0 1.45 1.45 2/0 1.40 
0 1.55 1.50 0 1.49 
1 1.75 1.65 1 1.61 
2 1.80 1.70 2 1.72 
3 1.90 1.80 3 1.81 
4 1.95 1.90 4 1.95 
5 2.00 1.95 5 2.00 
6 2.05 2.05 6 2.12 
7 2.10 2.10 7 2.19 
8 2.20 2.25 8 2.28 
9 2.30 2.30 9 2.43 

10 2.40 2.40 10 2.50 
11 2.50 2.50 11 2.55 
12 2.65 2.60 12 2.68 
13 2.80 2.70 13 2.75 
14 2.85 2.80 14 2.87 
15 2.95 2.90 15 2.96 
16 3.00 2.95 16 3.02 

   17 3.15 
   18 3.26 
   19 3.36 
   20 3.47 
   21 3.55 
   22 3.58 
   23 3.68 
   24 3.80 
   25 3.94 

Table 6 
 

However, as is obvious in Graph 11, there is an 
unacceptable discontinuity between sizes “8” and “9”.  

Much to my surprise I found that 3 formulae, as 
shown in Graph 12, are even better! They are: 

M = 3/12S + 66 douzièmes, S = 14/0 to 9/0 
M = 7/12S + 96 douzièmes, S = 8/0 to 4 

and 
M = 6/12S + 98 douzièmes, S = 5 to 25 

These formulae fit Don Ross’s data to within 0.05 mm 
throughout the entire scale with an average difference 
of only 0.02 mm. And no, I did not fiddle it! 
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So the Lepine gauge is definitely French imperial 
but, if the Ferret gauge is accurate, it is much more 
complex than I would have expected. 

 
Figure 10 

    
 a b 

Figure 9 
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Prenot Mainspring Heights 
The gauge signed C Prenot, Figure 11 and Table 

7, only has notches on each side, numbered “000” to 
“40”. The lack of barrel sinks or any other identifying 
features means it might not be a mainspring gauge. 
However, the notch sizes and their numbering strongly 
suggest that was its purpose. 

 
Prenot Mainspring Heights 

Scale Gauge Formula 
3/0 0.86 0.91 
2/0 1.05 1.02 
0 1.15 1.13 
1 1.23 1.24 
2 1.35 1.35 
3 1.46 1.46 
4 1.59 1.57 
5 1.70 1.68 
6 1.83 1.79 
7 1.98 1.90 
8 2.05 2.01 
9 2.16 2.12 
10 2.24 2.22 
11 2.40 2.33 
12 2.57 2.44 
13 2.62 2.55 
14 2.65 2.66 
15 2.82 2.77 
16 2.96 2.88 
17 3.02 2.99 
18 3.08 3.10 
19 3.17 3.21 
20 3.32 3.32 
21 3.37 3.42 
22 3.51 3.51 
23 3.59 3.60 
24 3.73 3.70 
25 3.83 3.79 
26 3.87 3.89 
27 3.97 3.98 
28 4.12 4.07 
29 4.24 4.17 
30 4.30 4.26 
31 4.44 4.36 
32 4.48 4.45 
33 4.55 4.54 
34 4.64 4.64 
35 4.72 4.73 
36 4.84 4.83 
37 4.92 4.92 
38 5.04 5.01 
39 5.11 5.11 
40 5.24 5.20 

Table 7 
 

Although not obvious from Graph 13, this gauge, 
like the Montandon gauge, uses different increments 
above and below size “20”: 

M = 0.1103S + 1.0389 mm 
M = 0.0951S + 1.3281 mm 

or 
M = 7/12S + 72 douzièmes 
M = 6/12S + 92 douzièmes 

The maximum difference between the gauge and the 
formulae is 0.13 at size “12”. But, as can be seen from 
Graph 12, this is due to the gauge being made 
incorrectly.  

It is clear that the gauge is French imperial. 

 
Figure 11 
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Comparison of Heights 
Table 8 and Graph 14 compare the mainspring 

heights of the different gauges. 
To construct this comparison I have arbitrarily 

chosen the notch width 2.00 mm. That is, I have 
aligned the heights for each gauge so that the closest 

sizes to 2.00 mm are in the same row of the table. With 
the exception of the two known equivalents, 
Montondon/Martin Geneva and Lepine/Ferret, it is 
clear that the other scales are different from each 
other. Thus there are five different gauge types. 

 
Comparison of the Equivalent Scales of Gauges 

Montandon & 
Martin Geneva Martin Lever Robert Lepine & 

Ferret Prenot 

  3/0   
  2/0   
  1/0   
  0   
  1   

10/0  2   
9/0  3 14/0  
8/0  4 13/0  
7/0  5 12/0  
6/0  6 11/0  
5/0  7 10/0  
4/0  8 9/0  
3/0  9 8/0  
2/0  10 7/0  
1/0  11 6/0 3/0 
1  12 5/0 2/0 
2  13 4/0 0 
3  14 3/0 1 
4 1 15 2/0 2 
5 2 16 0 3 
6 3 17 1 4 
7 4 18 2 5 
8 5 19 3 6 
9 6 20 4 7 

10 7 21 5 8 
11 8 22 6 9 
12 9 23 7 10 
13 10 24 8 11 
14 11 25 9 12 
15 12 26 10 13 
16 13 27 11 14 
17 14 28 12 15 
18 15 29 13 16 
19 16 30 14 17 
20 17 31 15 18 
21 18 32 16 19 
22 19 33 17 20 
23 20 34 18 21 
24 21 35 19 22 
25 22 36 20 23 
26 23 37 21 24 
27 24 38 22 25 
28 25 39 23 26 
29 26 40 24 27 

Table 8
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Barrel Diameters 
As I have noted, the European gauges determined 

mainspring thickness from barrel diameters.  
However, when the watch repairer used one of 

these gauges, all that he learned was the scale number 
for the barrel. To use a scale number he either had to 
rely on the mainspring manufacturer or use a table to 
convert it to the thickness. However, I have not seen 
such a table for any of the gauges.  

The only tables I know of were published by 
Jendritzki and in the Jewelers’ Circular, and both 
convert barrel diameters in millimetres to mainspring 
thicknesses in ¹⁄₁₀₀ mm. Jendritzki writes:  

“It is preferable to have a long, weak spring. 
However, if the watch is so constructed that 
friction in the gearing and the escapement 
absorbs a considerable amount of power, a 
compromise will have to be struck, and a 
thicker spring chosen.” 
 Table 9 is from Jendritzki and, other than a few 

obvious errors, the Jewelers’ Circular table is the same 
as the column for weak mainsprings. 

In principle this method is fundamentally flawed. 
The strength of a mainspring depends on the inside 
diameter of the barrel, but barrel sinks measure the 
outside diameter. Thus they are oversize by twice the 
thickness of the wall of the barrel, which can vary 
arbitrarily. Clearly the method of determining the 
mainsprings thickness should take this into account. 

Assuming the diameter of the barrel arbor is ¹⁄₃ 
the diameter of the barrel, the formula for the 
maximum number of turns of a mainspring in a barrel 
(see for example Reymondin et al The Theory of 
Horology) reduces to: 

Nmax = 0.157379R/s 
where R is the inside radius of the barrel and s is the 
mainspring strength.  

Jendritzki’s table generates springs with about 6 
turns, although the small barrels with weak springs 
generate 7 to 8 turns. This fits with the use of stop-
work where the first turn is used to set up the spring 
and the last turn is not used. Of course the barrel 
diameters are useless for watches that require a 
different number of turns. 

Column 2 of Table 10 shows the number of turns 
for normal thickness springs. If the barrel diameters 
are reduced by 1 mm (for a wall thickness of 0.5 mm), 
as in Column 3 of Table 10, the number of turns is 
reduced a little, but not enough to seriously affect the 
validity of the table.  So using the outside diameter is 
acceptable. 

As these are go-nogo gauges and actual size of a 
sink doesn’t matter much; in fact, the actual sizes of 
the sinks in my gauges are not nice, regular numbers 
of millimetres, but pretty arbitrary values. What is 
important is that a barrel will fit in the right sink. 

The following sections examine the barrel sinks of 
the Montandon, Martin, Robert and Ferret gauges.  

The Lepine gauge is not considered because the  
 

 

 
Thickness ¹⁄₁₀₀ mm Barrel 

Diameter 
mm weak normal strong 
5.25 5 6 7 
6.00 6 7 8 
6.75 7 8 9 
7.50 8 9 10 
8.25 9 10 11 
9.00 10 11 12 
9.75 11 12 13 

10.50 12 13 14 
11.25 13 14 15 
12.00 14 15 16 
12.75 15 16 17 
13.50 16 17 18 
14.25 17 18 19 
15.00 18 19 20 
15.75 19 20 21 
16.50 20 21 22 
17.25 21 22 23 
18.00 22 23 24 
18.75 23 24 25 
19.50 24 25 26 
20.25 25 26 27 
21.00 26 27 28 
21.75 27 28 29 

Table 9 
 
 
 

Barrel 
Diameter 

mm 

Turns 
outside 

diameter 

Turns 
inside 

diameter 
5.25 6.89 5.57 

6 6.74 5.62 
6.75 6.64 5.66 
7.5 6.56 5.68 
8.25 6.49 5.70 

9 6.44 5.72 
9.75 6.39 5.74 
10.5 6.36 5.75 

11.25 6.32 5.76 
12 6.30 5.77 

12.75 6.27 5.78 
13.5 6.25 5.79 

14.25 6.23 5.79 
15 6.21 5.80 

15.75 6.20 5.80 
16.5 6.18 5.81 

17.25 6.17 5.81 
18 6.16 5.82 

18.75 6.15 5.82 
19.5 6.14 5.82 

20.25 6.13 5.83 
21 6.12 5.83 

21.75 6.11 5.83 
Table 10 

 



Mainspring Gauges and the Dennison Combined Gauge 

22 

only information I have on its barrel diameters is from 
an advertisement in the 1932 Swartchild catalogue, 
Figure 12. This gauge has at least barrel sizes “4/0” to 
“9”, but their diameters are not known. However, the  
table indicates that the Lepine heights had sizes “1” to 

“40”, whereas the other tables describe 26 sizes from 
“10/0” to “16”. I do not know which is right. 

The advertisement is also interesting because the 
barrel sink sizes are called forces, directly relating 
them to mainspring strengths. 

 
 

 

 
Figure 12 
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Montandon Barrel Diameters 
Table 11 gives the barrel diameters for 

Montandon gauges. It has the scale from Jendritzki to 
which I have added my gauge, Stephen Katchur’s 
gauge and the sizes according to Buffat’s formula.  

Buffat does not specify any actual sizes, only 
giving the increments. I have assumed that “4/0” is 
23.00 mm and calculated the rest, extending them to 
“25”. However, it is clear that Buffat’s formula is 
completely wrong and I will ignore his sizes. 

More importantly, Jendritzki omits the scale 
numbers “8”, “11”, “20”, and “23”, but we know, from 
actual gauges, that at least sizes “8” and “11” exist. So 
we can be sure that Jendritzki has rounded the values 
to fit into his neat table (using an increment of 0.75 
mm) and, in doing so, has been forced to omit these 
four scale numbers. Graph 15 shows that Jendritzki’s 
values are definitely peculiar and cannot be used. In 
contrast, the values from the two actual gauges are 
consistent. 

Although not obvious from Graph 15, my gauge 
suggests that, like Montandon’s heights, the barrel 
diameters require two formulae with the change 
occurring at size “9”. This becomes clear in Graph 16 
where the two least-squares lines are shown. The 
formulae for sizes “4/0” to “9” and “9” to “18” are: 

M = -0.7127S+20.7432, S = 4/0 to 9 mm 
M = -0.5758S+19.3568, S = 9 to 18 mm 

The minus sign with a is because the scale 
numbers are reversed, running from the largest to the 
smallest barrel diameter; and this applies to all the 
barrel scales. However it is the magnitude of a which 
is important. 

The first formula might just be metric, but the 
second most certainly is not. However, both have very 
good French imperial equivalents: 

M = -48/12S +1324/12 douzième, S = 4/0 to 
9 

M = -36/12S+1224/12 douzième, S = 9 to 18 
These look better when simplified to: 

M = -4S +110⁴⁄₁₂ douzième, S = 4/0 to 9 
M = -3S+102 douzième, S = 9 to 18 

Graph 17 shows these formulae compared with my 
gauge. I have also included Jendritzki’s values because 
it is now clear that most of the values in his table are 
correct, the errors occurring between sizes “9” and 
“16”.  

The barrel diameters resolve the question I posed 
earlier: Is the Montandon gauge metric or imperial? 
Unless there is a very good reason to think otherwise, 
I believe the gauges were consistent and that they 
should be either imperial or metric, but not both. If 
this is the case, then the Montandon gauge is 
definitely French imperial. 

 
 
 
 
 
 
 

 
 
 
 
 

Montandon Barrel Diameters 
Scale Jendritzki My gauge Katchur Buffat 

4/0 23.25 23.00  23.00 
3/0 22.50 22.00  22.00 
2/0 21.75 21.08  21.00 
0 21.00 20.57  20.00 
1 20.25 20.07 20.33 19.50 
2 19.50 19.51 19.21 19.00 
3 18.75 19.00 18.76 18.50 
4 18.00 18.03 18.10 18.00 
5 17.25 17.50 17.35 17.50 
6 16.50 16.52 16.72 17.00 
7 15.75 15.54 16.01 16.50 
8  15.03 15.24 16.00 
9 15.00 14.01 14.58 15.50 

10 14.25 13.52 13.79 15.00 
11  13.00 13.38 14.50 
12 13.50 12.51 12.66 14.00 
13 12.75 12.00 11.68 13.50 
14 12.00 11.50 11.18 13.00 
15 11.25 10.54 10.29 12.50 
16 10.50 10.00 9.73 12.00 
17 9.75 9.50  11.50 
18 9.00 8.96  11.00 
19 8.25   10.50 
20    10.00 
21 7.50   9.50 
22 6.75   9.00 
23    8.50 
24 6.00   8.00 
25 5.25   7.50 

Table 11 
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Martin and Ferret Barrel Diameters 
Table 12 gives the barrel diameters for my two 

Martin gauges and Don Ross’s Ferret gauge.  
There are some discrepancies between the Martin 

gauges, including the size “15” barrel on the second 
gauge being almost the same diameter as the size “14” 
barrel! But most importantly, the values for “15” and 
“16” are too high on both gauges; Graph 18 shows the 
average of the two gauges, but that has no effect on 
the discrepancy.  

If I am right about the Martin Lever scale being 
metric and the Geneva’s scale being French imperial, 
the Martin barrel diameters could be either.  

One possibility is: 
M = (-46/12)S + 1344/12 douzièmes 

This formula is almost identical to 
M = -0.7S + 21 mm 

which is perhaps more satisfactory.  
So it is tempting to conclude that, except for the 

Geneva’s heights which are probably imperial, 
Martin’s gauge is metric.  

However, the Ferret gauge changes this. It not 
only fits the same formula, but fits it better as seen in 
Graph 18. But the Ferret heights are most likely to be 
French imperial and the choice of  

M = (-46/12)S + 1344/12 douzièmes 
is inevitable.  

It would be silly to assign a French imperial 
formula and a metric formula to the same scale 
simultaneously. And so we must decide that only the 
Lever heights on the Martin gauge are metric, and the 
Geneva’s heights and the barrel diameters are 
imperial. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Martin and Ferret Barrel Diameters 
scale Martin 1 Martin 2 Ferret 

1 20.28 20.74 20.15 
2 19.83 19.97 19.58 
3 18.95 18.78 18.89 
4 18.08 18.20 18.34 
5 17.34 17.59 17.48 
6 16.73 16.58 16.71 
7 15.98 16.08 15.91 
8 15.34 15.68 15.43 
9 14.48 14.48 14.69 

10 13.84 13.98 13.94 
11 12.98 13.23 13.15 
12 12.63 12.62 12.67 
13 11.73 12.02 11.74 
14 10.98 10.78 10.92 
15 10.64 10.58 10.27 
16 10.02 10.14 9.54 

Table 12 
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Robert Barrel Diameters 
The barrel diameter scale in the Jewelers’ 

Circular article is the Robert scale and is identical to 
Jendritzki’s table. I mention this because the scales in 
different books are sometimes different. 

The Robert scale given by Jendritzki, Table 13, is 
clearly and precisely metric: 

M = -0.75 S + 21 mm 
However, there is an imperial formula: 

M = -4S+112 douzième 
which is as good. Graph 19 shows that the two 
formulae cannot be distinguished. 

Although there must be some doubt, it appears 
the barrel diameters confirm the Robert scale to be 
metric. But I am assuming that Jendritzki’s figures 
are not the result of rounding imperial values to their 
nearest metric counterpart. If he has done this, then it 
is quite possible that the Robert gauge is actually 
French imperial. It is impossible to decide without 
measuring one or more real gauges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robert Barrel Diameters 
Scale Jendritzki 

2/0 21.75 
0 21.00 
1 20.25 
2 19.50 
3 18.75 
4 18.00 
5 17.25 
6 16.50 
7 15.75 
8 15.00 
9 14.25 
10 13.50 
11 12.75 
12 12.00 
13 11.25 
14 10.50 
15 9.75 
16 9.00 
17 8.25 
18 7.50 
19 6.75 
20 6.00 
21 5.25 

Table 13 
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Comparison of Barrel Diameters 
Because the four gauges with barrel sinks have 

almost identical scales, it is possible to compare them 
directly, and Graph 20 shows that up to size “12” they 
are very similar, after which the Montandon scale 
deviates from the other two. 

The only significance of barrel diameters is as a 
means of determining mainspring strengths. Using the 
formula given earlier, the strength of a mainspring is: 

s = 0.157379R/N 
If we assume N = 6 turns, then 

s = 0.157379R/6 
Table 14 and Graph 21 show these nominal 

strengths.  
Rounding the strengths to the nearest 0.01 mm 

results in the Martin, Ferret and Robert gauges 
producing identical strengths. And the Montandon 
gauge now produced the same strengths for sizes “9” 
and “10”, “12” and “13”, “16” and “17”, “20” and “21”, 
and “24” and “25”; that is, the difference in barrel 
diameters is too small. 

But this is misleading. 
First, if we graph the strengths to the nearest ¹⁄₂ 

size (0.005 mm), as shown in Graph 22, we get a 
different picture. Now the Montandon scale makes 
sense. 

Second, we are probably using the wrong 
dimensions. As three, possibly all four, of the gauges 
are French imperial, we should be using douzièmes not 
millimetres.  

Graph 23 shows the Montandon strengths in ¹⁄₁₂ 
douzièmes. The barrel sizes in douzièmes were 
calculated from the formulae, and then the above 
formula was used to calculate the corresponding 
mainspring strengths in ¹⁄₁₂ douzièmes. These were 
then rounded to the nearest ¹⁄₂/12 douzième. The result 
is quite different from the metric calculation in Graphs 
21 and 22! 

The reason for the difference is simple. In Graphs 
21 and 22 I have rounded the strengths to the nearest 
0.01 or 0.005 mm. But in Graph 23 the sizes have been 
rounded to the nearest ¹⁄₂/12 douzième which is about 
0.007833 mm. It is the effects of rounding that have 
caused the problems with the published tables, and it 
is clear that careless rounding can produce incorrect 
results. 

In fact, the similarity between the gauges is a 
necessity. In order to produce sensible mainspring 
strengths, which must be based on the above formula, 
the barrel diameters of the different gauges must be 
almost the same. The only scope for variation is the 
choice of sizes, but it seems all makers have decided to 
use the same values for them. 

 
 
 
 
 
 
 
 

Nominal Mainspring Strengths 
Scale Montandon Martin/Ferret Robert 

4/0 0.30   
3/0 0.29   
2/0 0.28  0.29 
0 0.27  0.28 
1 0.26 0.27 0.27 
2 0.25 0.26 0.26 
3 0.24 0.25 0.25 
4 0.23 0.24 0.24 
5 0.22 0.23 0.23 
6 0.21 0.22 0.22 
7 0.20 0.21 0.21 
8 0.19 0.20 0.20 
9 0.18 0.19 0.19 
10 0.18 0.18 0.18 
11 0.17 0.17 0.17 
12 0.16 0.16 0.16 
13 0.16 0.15 0.15 
14 0.15 0.14 0.14 
15 0.14 0.13 0.13 
16 0.13 0.12 0.12 
17 0.13  0.11 
18 0.12  0.10 
19 0.11  0.09 
20 0.10  0.08 
21 0.10  0.07 
22 0.09   
23 0.08   
24 0.07   
25 0.07   

Table 14 
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The Dennison Gauges 
The history of Dennison’s gauges is obscure. The 

only information we have is Dennison’s own statement 
that he developed a combined gauge about 1840. Since 
then both the combined gauge and the simpler 
mainspring gauge have been produced contempor-
aneously and in a number of different forms. 

Assuming the combined gauge came first and the 
mainspring gauge was a later development, we can 
recognise at least five versions, as shown in Figure 13: 

(a) The original form. There are three measuring 
scales, mainspring height notches and a 
brass slit running the full length of the 
gauge. The body is made up of two pieces of 
brass joined together by brass blocks at both 
ends. There is no mainspring strength gauge. 

(b) This is the same gauge with a mainspring 
strength slit gauge attached to the bottom (so 
that it does not obstruct the numbers on the 
face). It is now difficult to use the widest part 
of the brass slit gauge. 

(c) The brass slit is omitted and the gauge is a 
single piece of brass. This gauge is illustrated 
in the Henri Picard & Frère catalogue circa 
1885. 

(d) The three scales on the original gauge are 
replaced by a single 3-inch rule with ¹⁄₃₂ inch 
and millimetre markings. 

(e) The last remaining measuring scale is 
removed and the gauge is a simple 
mainspring gauge. 

 

               
 a b c d e 

Figure 13 
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These gauges were not manufactured strictly 
sequentially, but overlapped each other. For example, 
both types b and e appear in the 1932 Swartchild 
catalogue (B177), but by the 1935 Swartchild 
catalogue (B-232) type b has been replaced by type d. 

At the same time, the steel slit gauge for 
mainspring strengths also changed and there were at 
least four types, as in Figure 14. 

(a) Only the Dennison numbers 12 to 4/0. 
(b) The Dennison numbers with metric 

equivalents. 
(c) The Dennison numbers with different metric 

equivalents. 
(d) The Dennison numbers expanded to include 

half numbers “9¹⁄₂”, “6¹⁄₂”, “3¹⁄₂”, “0¹⁄₂” and 
“00¹⁄₂”, together with metric equivalents.  

Figure 14 e is a large type a gauge, with the 
Dennison strength numbers from 000 to 16, which 
came from a supply house in Philadelphia. It would be 
more reliable than the normal gauges and was 
probably a standard gauge used to measure 
mainsprings for orders. 

For the reasons given below, I am confident that 
type a was the original design, but it was still 
available (attached to a Dennison mainspring gauge) 
in the 1935 Swartchild catalogue. And that same 
catalogue also illustrates types b and c! Type d is 
described in the WDMAA catalogue. A very important 
point to note is that the metric equivalents on gauges 
b and c are different and, in fact, both are wrong. 

 

              
 a b c d e 

Figure 14 
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Dennison Mainspring Heights 
According to the Official WMDAA Catalog of 

Genuine Watch Parts the Dennison mainspring 
heights are metric, and my mainspring gauge, Figure 
13 e, appears to confirm this, with the Dennison 
numbers on the front and metric values, 1/10th 
millimetre, on the back. So Dennison number S is  

M = 0.1(S-1) + 1.0 mm  
or 

M = 0.1S + 0.9 mm  
for every number, interpreting 2/0, 3/0 ... as -1, -2, etc. 
Note that there is no 1/0, it being the same as 0. 

So it seems Dennison was right when he wrote in 
his biographical sketch: 

“for this purpose I concluded that it would be 
best to adopt for a basis the French measure 
owing to its having a scientific basis, dividing 
the millimetre into 100ths”. 
But is it metric? 
Table 15 gives the mainspring heights measured 

from my combined and mainspring gauges, Figure 13 
types a and e. First, these gauges, like their European 
counterparts, are badly made; in particular sizes “18” 
to “22” of the mainspring gauge are too wide, as are 
sizes “39” to “43” of the combined gauge. Second, all 
the notches are oversize except for size “7” of the 
mainspring gauge. 

Using least-squares curve fitting, the best line for 
the mainspring gauge is: 

M = 0.1012S + 0.9311 mm 
and for the combined gauge: 

M = 0.1015S + 0.9201 mm 
The values of a are near enough to 0.1 mm, but 

the values of b are not near enough to 0.9 mm for a 
metric formula to be credible. Of course, it can be 
argued that these are go-nogo notches and being 
oversize is not important. However, too many notches 
are oversize by too much for this to be acceptable. 

In contrast, 1/250 inch = 0.10160 mm which is 
very close to the nominal increment of 0.1 mm and 
even closer to the values of a above, differing by at 
most 0.0004 mm. Further 9/250 inch is 0.9144 mm 
which is much closer to the values of b than is 1.0 mm. 
So: 

M = (1/250)S + 9/250 inch 
or 

M = (1/250)(S - 1) + 1/25 inch 
is a better fit to the gauges than the metric formula 
given above, and it is most likely that Dennison’s 
mainspring heights are imperial, based on the English 
inch. 

Graph 24 shows these results, particularly that 
the metric formula is a poorer fit to the actual gauges. 

 
 
 
 
 
 
 
 
 

 
Dennison Mainspring Heights 

Scale Mainspring 
gauge 

Combined 
gauge 

Metric 
formula 

Imperial 
formula 

5/0 0.53  0.50 0.51 
4/0 0.67  0.60 0.61 
3/0 0.77  0.70 0.71 
2/0 0.89  0.80 0.81 
0 0.93  0.90 0.91 
1 1.04 1.01 1.00 1.02 
2 1.11 1.11 1.10 1.12 
3 1.22 1.22 1.20 1.22 
4 1.31 1.33 1.30 1.32 
5 1.41 1.41 1.40 1.42 
6 1.53 1.51 1.50 1.52 
7 1.58 1.64 1.60 1.63 
8 1.70 1.73 1.70 1.73 
9 1.80 1.83 1.80 1.83 
10 1.92 1.93 1.90 1.93 
11 2.02 2.03 2.00 2.03 
12 2.12 2.13 2.10 2.13 
13 2.20 2.26 2.20 2.24 
14 2.35 2.34 2.30 2.34 
15 2.43 2.46 2.40 2.44 
16 2.55 2.56 2.50 2.54 
17 2.64 2.67 2.60 2.64 
18 2.83 2.76 2.70 2.74 
19 2.92 2.86 2.80 2.84 
20 3.01 2.95 2.90 2.95 
21 3.17 3.06 3.00 3.05 
22 3.22 3.16 3.10 3.15 
23 3.26 3.23 3.20 3.25 
24 3.36 3.37 3.30 3.35 
25 3.44 3.43 3.40 3.45 
26 3.53 3.57 3.50 3.56 
27 3.64 3.64 3.60 3.66 
28 3.71 3.77 3.70 3.76 
29 3.85 3.88 3.80 3.86 
30 3.96 3.99 3.90 3.96 
31 4.07 4.08 4.00 4.06 
32  4.17 4.10 4.17 
33  4.25 4.20 4.27 
34  4.37 4.30 4.37 
35  4.43 4.40 4.47 
36  4.55 4.50 4.57 
37  4.64 4.60 4.67 
38  4.76 4.70 4.78 
39  4.87 4.80 4.88 
40  5.01 4.90 4.98 
41  5.08 5.00 5.08 
42  5.20 5.10 5.18 
43  5.28 5.20 5.28 

Table 15 
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Dennison Strength Gauges 
Types a and b: Because slit gauges are simple 

linear magnifying gauges and types a, b and c in 
Figure 14 have the same Dennison scale, these three 
must be the same. The only way they could be different 
is if the widths of the slits were not the same; in which 
case each type would produce completely different 
measurements with the one mainspring. However, 
type d, which has a different scale including the “¹⁄₂” 
sizes, need not be the same.  

The only strength gauge I have is attached to my 
mainspring gauge, Figure 13 e and Figure 14 b. When 
I unscrewed it to clean it, I found it was made of two 
separate parts, Figure 15. This can only be described 
as utterly stupid! It would be extremely difficult to 
reassemble it so that the slit was correct. I think I 
would have to get two bits of mainspring of different 
but known thicknesses and use them to hold the two 
halves in their correct positions while I screwed it back 
together. This would not be easy to do, especially as 
any error in the strengths of the springs would cause 
the gauge to be hopelessly inaccurate and, as I 
explained when discussing the Martin strength gauge, 
the one spring can register different sizes depending 
on how hard it is pressed into the slit. However, there 
is the small consolation this gauge can be taken apart 
and cleaned. 

More important are the scales. The M/M scale 
looks metric but is most certainly is not! One 
fundamental point is that the scale on a slit gauge 
must be linear; that is, the slit widens by the same 
amount between any two adjacent marks on the scale. 
But the metric scale on Dennison’s gauge is missing 
the values “12”, “16”, “20” and “25”. Without them the 
scale cannot be metric and must be wrong!  

This is shown in Figure 16. Assuming the “8” and 
“28” mm scale marks are correct, and they might not 
be, I have added the correct divisions for a metric scale 
of ¹⁄₁₀₀ mm. It is clear that only “8”, “13, “18”, “23” and 
“28” are close to their correct positions. 

A consequence is that it is impossible to assemble 
the gauge accurately, because I do not know which 
scale marks are correct and so I do not know how thick 
the pieces of mainspring need to be to correctly 
assemble it!  

Table 16 and Graph 25 describe this gauge. The 
least-squares best fit line for type b is: 

M = -0.0127S + 0.2425 mm 
and the formula based on sizes “13” and “000” is: 

M = -0.0125S + 0.2425 mm 
a trivial difference. So the gauge is obviously not 
metric, but it is definitely English Imperial: 

M = (-1/2000)S + 19/2000 inch 
or 

M = (-1/2000)(S - 1) + 1/100 inch 
What is clear is that the relationship between the 

Dennison divisions on my gauge and the metric system 
is very poor. They only agree for 5 divisions, and the 
other divisions are out by up to ⁸⁄₁₀ths of a division! 
Indeed, it is a waste of time to try and fit this to a 
metric formula. 

 
 

 
 
 

 
Figure 15 

 
 
 
 

 
Figure 16 
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Type c: The type c gauge is an attempt to resolve 
these problems and make the gauge more like a metric 
gauge. Instead of having jumps of 0.02 mm, sizes “2/0”, 
“3”, “6” and “10” are reduced by 0.005 mm, which 
makes the gauge appear more regular. But because 
the Dennison sizes are the same as those in types a 
and b, the same formulae apply and the gauge is 
English imperial. As can be seen from Graph 25 it 
partly achieves the goal of evening out the metric 
equivalents, but it does nothing at all to resolve the 
fundamental problem: the metric scale is still non-
linear and cannot be correct. 

Table 16 includes the correct, necessary metric 
equivalents to Dennison’s sizes and shows that the 
person who designed the type c gauge got it wrong; 
sizes “3/0”, “2”, “9” and “13” also should be decreased 
by 0.005 mm. But then the gauge would be so different 
from the original as to be ridiculous. 

Type d: The Official WMDAA Catalog of Genuine 
Watch Parts provides a table of the new Dennison 
strengths including the “¹⁄₂” sizes. The first point to 
note is that these “¹⁄₂” sizes only occur within the range 
of sizes “4/0” to “13” which are on the strength gauges 
in Figure 14. The WMDAA has extended the table at 
both ends, but there are no “¹⁄₂” sizes between “13” and 
“20”, and between “4/0” and “15/0”. That is, the scale is 
precisely metric, based on 0.01 mm, at both extremes.  

However, the only way to make the range “4/0” to 
“13” metric is to add sizes to fill in the gaps. Which is 
what the WMDAA have done by creating “¹⁄₂” sizes, as 
in Figure 17 and Table 17.  

In principle the gauge is now strictly metric: 
M = -0.01S +0.25 mm for S = -15 to 24 

which looks good. But there is a problem. 
Up until now I have created formulae of the form: 

M = aS + b 
without stressing one fundamental point. The values of 
S are numbers. They are not sizes. I have been able to 
gloss over this point because with every gauge we have 
examined until now there has been a simple linear 
relationship between the gauge sizes and the numbers 
S so that they have coincided. That is S = 1 
corresponds to gauge size “1”, S = 2 to size “2” and so 
on, interpreting sizes such as 3/0 as negative numbers. 
For this to be possible the gauge sizes must be 
complete with no missing and no extra “numbers”. 

The WMDAA scale fails this requirement. It 
requires three different formulae: 

M = -0.01(S+4) +0.25 mm for sizes = “10” to 
“20”, S being equal to the size as a 
number 

M = -0.01S +0.25 mm for sizes = “4/0” to 
“15/0”, S being equal to the size as a 
number 

M = -0.01S +0.25 mm for sizes = “000¹⁄₂” to 
“9¹⁄₂”, where S must be read from Table 
17. 

The first two formulae are straightforward; they 
are simply different! But the last formula can only be 
used by looking up the value of S from a table; there is 
no linear relationship between the sizes and S. A 
linear relationship is only possible if there is a “¹⁄₂” size 
between every full size. 

 

 
 
 
 

Dennison Strength Gauges Types a, b and c 

Scale Type b Type c 1/2000 
inch 

Metric 
equivalent 

13 0.08 0.08 6 0.076 
12 0.09 0.09 7 0.089 
11 0.10 0.10 8 0.102 
10 0.11 0.115 9 0.114 
9 0.13 0.13 10 0.127 
8 0.14 0.14 11 0.140 
7 0.15 0.15 12 0.152 
6 0.17 0.165 13 0.165 
5 0.18 0.18 14 0.178 
4 0.19 0.19 15 0.190 
3 0.21 0.205 16 0.203 
2 0.22 0.22 17 0.216 
1 0.23 0.23 18 0.229 
0 0.24 0.24 19 0.241 

2/0 0.26 0.255 20 0.254 
3/0 0.27 0.27 21 0.267 
4/0 0.28 0.28 22 0.279 

Table 16 
 
 
 
 

 
Figure 17 
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Even worse, if I order a size “0” or “4/0” 
mainspring I have to specify which strength gauge I 
am using! The original strengths were 0.24 and 0.28 
mm, but the WMDAA has changed these to 0.25 and 
0.29 mm. 

The WMDAA gauge can only be described as a 
creation of desperation! Two previous attempts had 
been tried to convert Dennison’s English imperial 
gauge to a metric gauge and both, as we have seen, 
failed. This last attempt is probably worse. Graph 26, 
based on the third and fourth columns of Table 17 
graphically illustrate this. If we try to apply the 
correct imperial formula to the scale sizes from “20” to 
“15/0” (type a) we find size “20” should be -0.013 mm! 
There are huge discrepancies at both ends of the 
range, and smaller but important differences 
elsewhere.  

That is, the WMDAA strength gauge is not a 
Dennison gauge, but an entirely new gauge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Type d (WMDAA) Strength Gauge 

Scale Scale 
number Type d Type a 

20 24 0.01 -0.013 
19 23 0.02 0.000 
18 22 0.03 0.013 
17 21 0.04 0.025 
16 20 0.05 0.038 
15 19 0.06 0.051 
14 18 0.07 0.063 
13 17 0.08 0.076 
12 16 0.09 0.089 
11 15 0.10 0.102 
10 14 0.11 0.114 

9 1/2 13 0.12  
9 12 0.13 0.127 
8 11 0.14 0.140 
7 10 0.15 0.152 

6 1/2 9 0.16  
6 8 0.17 0.165 
5 7 0.18 0.178 
4 6 0.19 0.190 

3 1/2 5 0.20  
3 4 0.21 0.203 
2 3 0.22 0.216 
1 2 0.23 0.229 

0 1/2 1 0.24  
0 0 0.25 0.241 
00 -1 0.26 0.254 

000 -2 0.27 0.267 
000 1/2 -3 0.28  

0000 -4 0.29 0.279 
5/0 -5 0.30 0.292 
6/0 -6 0.31 0.305 
7/0 -7 0.32 0.317 
8/0 -8 0.33 0.330 
9/0 -9 0.34 0.343 

10/0 -10 0.35 0.356 
11/0 -11 0.36 0.368 
12/0 -12 0.37 0.381 
13/0 -13 0.38 0.394 
14/0 -14 0.39 0.406 
15/0 -15 0.40 0.419 

Table 17 
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The Dennison Combined Gauge 
Except for the mainspring height notches on both 

side, this gauge is completely different from 
Dennison’s mainspring gauge. On the left-hand side, 
Figures 18 and 19, there is a brass block acting as a 
stop and three separate scales, A, B and C. In the 
middle there is a long slit, but the only scale that can 
be used with it is E, the set of numbers 1 to 34 which 
mark the mainspring height notches. These have 
“half” markers which are meaningless for mainspring 
heights, but may be useful if they are used with the 
slit. Finally, there is a tiny scale D, consisting of only 4 
lines, in a position where it could not be used. It 
clearly refers to the slit, but the slit is so narrow at 
this point that it cannot be used because of dirt, 
corrosion or damage. (This scale is not on the gauges of 
Dave Coatsworth and Don Ross, and it may be just a 
test marking. It measures about 0.05 or 1/20th inch, 
and has 4 divisions of about 0.0125 or 1/80th inch. 
Which might make sense, but it cannot be used.) 

The three scales are: 
A This is a ³⁄₄ inch long scale measuring ¹⁄₆₄ inch 

from 0 to 48. It is used for measuring from 
the end of the gauge. 

B This is a 1 inch long scale measuring ¹⁄₆₄ inch 
from 0 to 64. It is used for measuring from 
the stop. 

C This is strange because it runs from -2 to 40. 
Although it looks metric, it is in fact ¹⁄₃₂ inch, 
so it runs from  -²⁄₃₂ to ⁴⁰⁄₃₂.  

The three scales together are ²⁰⁰⁄₆₄ inches long, 3¹⁄₈ 
inches, but I do not know if this is significant.  

Scale C could be interpreted as sizes running from 
“3/0” to “40”, but its purpose is obscure.  

One possible use for it is to measure watch 
diameters. If it was intended for this purpose, the 
plate would be held against the stop and the watch 
size read off the scale: “3/0” (1 inch), “2/0” (1¹⁄₃₂ inch), 
“1/0” or “0” (1²⁄₃₂ inch), up to size “40” (2¹⁰⁄₃₂ inch).  

However, this scale is neither the Lancashire nor 
the Dennison scale used for American watch 
movements. The Lancashire scale increments by ¹⁄₃₀ 
inch and 1 inch is “6/0”. Dennison’s scale increments 
by ¹⁄₁₆ inch and uses letters; A is 1 inch, B is 1¹⁄₁₆ inch, 
and so on. 

It has also been suggested that the scale is used 
as above, but for watch crystals; however the same 
problem arises. Vaudrey Mercer The Frodshams, the 
Story of a Family of Chronometer Makers gives details 
of the three crystal gauges. These are: 

(a) 1/4 scale, the English or Lancashire gauge. 
Full sizes differ by ¹⁄₃₀ inch and ¹⁄₄ sizes 
increment by ¹⁄₁₂₀ inch or 0.212 mm. Size “0” 
is 1¹⁄₃₀ inch, so “0¹⁄₄” = 1⁵⁄₁₂₀, “0¹⁄₂” = 1⁶⁄₁₂₀, and 
so on. The scale goes from “12/0” to “29³⁄₄”. 

(b) 1/16 scale, based on the ligne. Full sizes are 
lignes and ¹⁄₁₆ sizes increment by ¹⁄₁₆ ligne or 
0.141 mm. Size “10” = 10 lignes, so “10¹⁄₁₆” = 
10¹⁄₁₆ ligne, 10²⁄₁₆” = 10²⁄₁₆ ligne, and so on. The 
scale goes from “7” to “23²⁄₁₆”. 

   
 Figure 18 Figure 19 

 
(c) 1/8 scale, based on ¹⁄₂ lignes. Full sizes are ¹⁄₂ 

lignes and ¹⁄₈ sizes increment by ¹⁄₁₆ ligne or 
0.141 mm. Size “1” is 10¹⁄₂ lignes, so “1¹⁄₈” = 
10⁹⁄₁₆ lignes, “1²⁄₈” = 10¹⁰⁄₁₆ lignes, and so on. 
The scale goes from “12/0” to “26²⁄₈”. 

These three gauges use completely different 
scales, 1/4 size “1”, 1/16 size “12” and 1/8 size “4” being 
equivalent.  

Dennison’s scale also has a different scale, size “0” 
corresponding to the above. But it has an increment of 
¹⁄₃₀ inch or 0.794 mm which is far too coarse for crystal 
sizes. Even if we read to half sizes, such as “1¹⁄₂”, the 
increment of 0.397 mm is still too coarse. So it cannot 
be used for cystals. 
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So we must assume Dennison devised a scale for 
something, but it may never have been used by other 
people. 

Note that in the later version, type d Figure 13, 
the metric scale is not against an edge and can only be 
used with the stop. 

The mainspring height notches are the same as 
those on the Dennison mainspring gauge described 
earlier and given in Table 16.  

This confirms my opinion that the height notches 
are English imperial based on ¹⁄₂₅₀th inch, and they 
were later adapted to the metric system, an easy thing 
to do because the scales agree very well and little 
manipulation is required. It would be stupid to 
imagine the combined gauge had three imperial scales 
and one metric scale. 

Finally, the slit running the length of the gauge 
creates a serious problem. The only scale that can be 
used with it is scale E, but that is simply ridiculous.  

As I have noted, the scale for a slit must be linear. 
For example, the width of this slit at scale number 
“34” is about 4.8 mm, so width at scale number “17” 
should be half that or 2.4 mm. But it is about 1.9 mm. 
So if we measure something in the slit there is no 
simple way to determine what that number represents 
in inches or millimetres. 

It is difficult to measure the width of the slit 
accurately at any point. But as it runs the whole 
length of the gauge, and it is possible to measure the 
width at the end reasonably accurately, we can 
calculate the width W a distance L from the narrow 
end to be about: 

W = 0.034L  
This applies to both metric and imperial units. As it is 
quite easy to measure L for each of the scale E 
divisions, Graph 24 provides a good picture of this 
scale; I have chosen imperial units to be consistent 
with the rest of the gauge. The line curves up showing 
the scale to be non-linear. 

Note that it appears that the scale numbers align 
with the middle of the corresponding notch for full 
numbers and with the middle of the corresponding 
block for half numbers. That is, L depends on the 
width of each notch and the width of each block. The 
first block, from the end of the gauge to notch “1”, is 
7.09 mm and the other blocks are about 1.37 mm, but 
they vary from 1.34 to 1.39 mm. None of these 
numbers make sense and it must be concluded that 
the values of L, and hence the values of W, are 
arbitrary. Thus something can be measured in the slit, 
but the scale number produced is meaningless. 

This is very embarrassing because it means 
Dennison created a gauge with an utterly useless 
feature! The only explanation, other than saying 
Dennison was an idiot, is if the original combined 
gauge had another scale on it; the back of the gauge is 
blank, so there is plenty of room for one.  

 
 
 
 
 
 
 

If we assume this scale was marked in ¹⁄₆₄ inch, 
the finest possible, then each division would 
correspond to 0.0005312 inch, solving the problem.  

As my measurements are rough, we can assume 
the correct relationship is: 

 W = 0.032L  
and the scale then measures in units of ¹⁄₂₀₀₀ inch. 

Of course this is a guess. We can only know 
whether I am right or not if someone produces a 
combined gauge with such a scale on it. 

Two other points need to be made. 
First, I have never seen or heard of a Dennison 

gauge with barrel sinks for measuring mainspring 
strengths. So did he always use a slit gauge? I think 
the answer is no, he didn’t. My reason is that scale B 
on the gauge can be used to measure the outside 
diameter of barrels. As this method was common it is 
not unreasonable to think Dennison employed it. So he 
had no need of a separate gauge to measure strengths. 

Second, when Sherwood described this gauge he 
wrote that watchmakers: 

 “may by its use, size wire or plate to all the 
sizes indicated by any Stubb’s gauge, also the 
diameter of wheels and pinions, most 
perfectly”.  

Unfortunately, this is not true. 
There is no suitable scale on the gauge to measure 

Stubbs wire. In fact there are two different Stubbs 
wire gauges, one for steel and one for iron wire. The 
steel wire gauge runs from size “1” (largest) to “80” 
(smallest), but according to the table in Kendrick & 
Davis Staking Tools and How to Use Them the gauge 
is erratic and the difference from one size to the next 
varies. Abbott’s The American Watchmaker and 
Jeweler, an Encyclopedia has a table for wire gauges 
that includes the Stubbs or Birmingham iron wire 
gauge which is quite different, but again the difference 
from one size to the next varies. This gauge runs from 
“4/0” to “36”.  

So the Stubbs sizes cannot be measured by a slit 
gauge and a plate with individual holes is necessary.  

Neither can the diameter of wheels and pinions be 
measured.  

A wheel could be measured using scale B provided 
it was not mounted on its arbor; if it were it would not 
be possible to accurately align the wheel with the stop. 
Which is why wheel gauges were like barrel gauges; 
round sinks with holes in the middle to take the arbor. 

Pinions can be measured in slit gauges or calipers, 
but there are serious problems when there are no 
leaves diametrically opposite each other; then the 
measurement is necessarily under-size. Anyway, the 
combined gauge has no suitable scale, unless the 
missing scale for the slit existed.  

Thus either Sherwood was completely wrong or he 
was describing some other, unknown gauge. The later 
is possible but unlikely. 
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Conclusions 
The first thing to point out is that I am not 

implying the makers of mainspring gauges spent a lot 
of time developing formulae. Indeed, I am sure it never 
occurred to them to study the mathematic foundations 
of their work, and my use of formulae has been to 
discover what they made, not how they made them.  

I am sure people like Montandon arbitrarily chose 
a convenient size and then made other sizes “so much” 
bigger or smaller. That is, it is the increment a in the 
formulae that is vital.  

Equally, if Montandon found he had too many 
sizes to be convenient, he just changed the increment 
to suit. The process was practical, informal, but based 
on units of measurement; the ligne, the inch or, much 
later, the millimetre. 

Unfortunately we do not know how these people 
went about their work, although some insight can be 
found in L’art de Faire les Ressorts de Montres suivi de 
la Maniere de Faire les Petits Ressorts de Repetitions et 
les Ressorts Spiraux by Blakey, an English translation 
of which appears in yet another obscure publication, 
The Ferrous Metallurgy of Early Clocks and Watches, 
Studies in Post Medieval Steel by Wayman. But we do 
not know how they sized mainsprings. So I have 
worked backwards, using least-squares curve fitting 
because it enabled me to deduce what they might have 
done, even if they did it differently. 

Perhaps more importantly, we do not know who 
these people were. Some names on gauges are simply 
those of tool makers, like Vigor or Fitrite. Others like 
Ferret almost certainly fall in this class. So who 
actually designed them? Montandon probably. Martin 
may be. As I have noted, information on the people 
and companies that made tools and parts is almost 
non-existent, and we can do little more than guess. 

The second point to be made is that the errors in 
mainspring gauges make them very unreliable. Even 
in such a small sample the frequency of errors is 
simply staggering, and I have no doubt that the gauges 
were made without any real care. 

In one way this doesn’t matter. The watchmaker 
who ordered a mainspring and got one of the wrong 
size probably did not even notice. Or, if it would not fit, 
being too high, returned it assuming he had been sent 
the wrong one. After all, if he used a Dennison 
strength gauge and ordered in millimetres, it is 
inevitable that the spring would be wrong!  

Did anyone care? I doubt it. These gauges are 
inherently dubious even if well made, and I am sure 
“good enough” was the prevailing sentiment with very 
few people demanding “right”. 

All of which depends on another unanswerable 
question: When were the gauges made? Unfortunately, 
other than patina, strips of brass don’t reveal their 
age. Even when incorporated in watches they can be 
difficult to date; My rule when I see a nondescript 
Swiss watch is to say “1880” simply because it is 
impossible to tell the age within about 40 or 50 years. 
So dating mainspring gauges is almost impossible.  

At first I had thought Dennison’s combined gauge 
was rare. Now we know it was probably made for 100 
years, from about 1840 to about 1940, and it is quite 
common. Indeed, all the gauges we have examined are 
almost certainly from the twentieth century. (The 
Montandon gauge in Figure 1 is probably an exception; 
I think it was made when craftsmanship was as 
important as price and so is earlier.) 

Which leads to the next unanswered question: Did 
the quality of mainspring gauges deteriorate over 
time? I can imagine that in the 1920s these gauges, 
although still commonly used, were regarded more as 
obsolete rather than practical tools. And so there may 
have no longer been any desire (or need) to make them 
with due care.  

Consider Dennison’s strength gauge, originally a 
practical, sensible gauge measuring small fractions of 
an inch. At some stage someone, probably a tool 
company, decided to pervert it by making it metric. 
After which there is a sorry saga of ill-conceived, 
incorrect gauges foisted upon watchmakers.  

Perhaps the later tool makers made gauges by 
copying one, without understanding the underlying 
measurement system, and so replicated errors? 

In contrast, this article has been based on an 
assumption: the people who designed the gauges were 
sensible. That is, there should be recognisable 
relationships between the sizes of notches, sinks and 
slits, and metric, imperial or other units of 
measurement. In other words, the tables for gauges 
should be uniform with each size differing from the 
next size by a constant increment. And the starting 
point, the base size, should be a sensible number in the 
appropriate unit of measurement.  

Although open to criticism, I believe I have 
demonstrated that the gauges examined fit this 
principle.  

However, I have not mentioned one aspect of 
them. I believe all these gauges were created before the 
adoption, let alone the acceptance, of the metric system 
in watchmaking. Watchmaking is renowned for being 
a very conservative profession, clinging to outdated 
ideas long past their use-by date. So that even after 
the general application of the metric system, the old 
French and English imperial systems were used, to the 
rather ridiculous extent that American watches have 
always been measured in Lancashire sizes and, even 
today, Swiss watch sizes are still quoted in lignes.  

Which is to say, without any evidence at all, I still 
believe mainspring gauges should be based on imperial 
measurements and a metric one should be viewed with 
great suspicion. With possibly one and a bit 
exceptions, this article supports that view:  

Montandon: 
 The gauge I have examined has French 

imperial heights and barrel diameters, and I 
am confident that Montandon was a 
mainspring maker. 
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Lepine: 
 The heights scale, the only scale I know of, is 

French imperial.  
 Who created this gauge is a mystery. We 

have Lepine heights listed in books, and 
gauges made by Montandon and Ferret 
(presumably a tool maker). But the only 
comparable barrel sizes (on the Ferret gauge) 
match Martin’s gauge which does not have 
Lepine heights!  

 It is possible that Lepine heights are a 
“generic” scale related to a type of watch, 
which would have to be standardised and 
made in large quantities; quite possibly the 
common Swiss barred movement of the 
1880s. 

Martin: 
 This gauge is confusing, because of the two 

different height scales. I am confident that 
the Geneva’s heights and the barrel 
diameters are French imperial; which means 
the Ferret barrel diameters are also French 
imperial. But the Lever heights could be 
metric. Certainly, there can be no doubt that 
the Martin slit gauge is metric. 

 The term “Geneva’s”, like “Lepine”, is 
probably generic, referring to watches made 
in Geneva and, as I have noted, these 
probably use the cylinder escapement. Which 
is why the other scale is called “Lever”. 

 I assume Martin was a mainspring maker, 
but I have no evidence for this. 

 
 
 

Robert: 
 I first thought the Robert gauge was the 

exception that proves the rule, and that it is 
purely metric; certainly the published tables 
support this view. But, as we have seen, 
tables can be misleading and the French 
imperial scales are possible. 

 An alternative is that Robert, a mainspring 
maker, may have begun using French 
imperial measurements and then changed to 
metric. As I have noted, we will not know 
unless some gauges are found and measured. 

Ferret: 
 This gauge is French imperial. Because it is a 

mix of Lepine and Martin scales, and made 
by a tool maker, it is not possible to be sure 
why it exists.  

Prenot: 
 This gauge is French imperial. Although the 

mainspring heights scale is different from 
other gauges, the lack of barrel sinks means 
it is hard to relate this gauge to the others. 
Who Prenot was and what he did is unknown. 

Dennison:  
 All Dennison gauges are English imperial. 
 
Finally, it would have been better if I had been 

able to examine more gauges, but time and 
opportunity has precluded that. I began by planning to 
write four or five pages on Dennison’s combined 
gauges and I have ended up with ten times that 
amount, which is enough. May be this might stimulate 
someone else to go further with these curious bits of 
brass. 
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