
SOME MATHEMATICS OF THE CANTILEVER PENDULUM -  
 

Alan Emmerson 

After writing Pendulums Revisited, I thought I ought to make a more determined effort to run out the 
equations for the cantilever spring suspension. I say “run out” rather than “solve”, because the equations are 
really just slightly complicated applications of standard engineering methods that were devised about 200 
years ago. I had studied the work of Kenneth James,1 in May 1998, but, because his presentation was so 
different from  that usual in engineering, I did not understand it well enough to be happy with his result. My 
motives were to expose the mathematical basis of the vibrations superimposed on the principal oscillation of 
the pendulum, to comment on the “centre of swing” concept,  and to explain the basis of  the Fedchenko 
suspension.  

 

 Figure 1 

Derivation 

The first part of the problem is nothing more than  examining a tip loaded cantilever to which an axial 
load is applied. Consider a suspension-spring to which, as shown in Figure 1, a vertical force W, a moment 
M, and lateral force F are applied at the point of attachment of the suspension-spring to the pendulum-rod.  
They rotate that point through an angle  and displace it  laterally a distance .  Those displacements 
apply to both the end of the spring and to the top of the pendulum rod. 

Setting:  

 l as the length of the spring 
                                                 

1 James.K Precision Pendulum Clocks - Circular Error and the Suspension Spring, Antiquarian Horology 
September 1974 pp868 et seq 



 E as Young’s modulus for the spring material (but see further remarks), and 

 I as the second moment of area (bending “moment of inertia”)of the spring; and 

adopting the usual notation and sign conventions we have: 

 

Bending Moment is                 M Fx W y  ( )  

Equation of elastic curve is EI
d y

dx
BM

2
2    

This is “engineers’ theory of bending” and applies only for small deflections where   sin . The theory 
is the work of  Bernoulli J. 1705, Bernoulli D.1742,  Euler 1744 and Coulomb 1776. We also assume that the 
change of bending moment due to tensile extension of the spring is negligible  and that the lateral force F 
does not contribute significantly to direct tension in the spring. These are fundamental assumptions and 
approximations that have stood the test of time for engineers but may yet prove not to be sufficiently precise 
for horology.2  We can be confident though that the general performance of our pendulum suspension spring 
will be satisfactorily represented by this theory. 

                                                 
2 When  is 3 the difference between  and sin is one part in two thousand. 
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This is a differential equation of a class for which the general solution  is well known. 

That solution is: 
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 and PI is valid 

We choose particular integral   
Fx
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Thus y C px C px
Fx

W

M

W
    1 2cos sin        

The constants C can be obtained from the boundary conditions: 

When  x y 0,       

 gives       C C
W
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W1 20 0
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cos sin  
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Substituting in  we obtain: 
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Check: At x=0, y= 
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Tip Displacement 

Equation  permits us to express the tip deflection  in terms of the applied forces and moments. We 
know that when x=l,  y=0.  Substituting in  gives: 
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Now we have predetermined that at the tip of the cantilever, where x = 0, the rotation or slope will be .  
Where  is positive when measured clockwise from the  x axis. Equation  shows that at x=0  
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Equations ,  and , give us the shape of the suspension spring and the displacement of its tip in 
terms of the applied loads F,W, and M. But with a moving pendulum, F and M will generally be unknown 
and W will only be known approximately. So, it will serve us to recast these equations in terms of the 
observable variables   and .  3 

Begin by introducing dummy variables A, B and C 

A
pl

B l
pl

p

C p pl

 

 

 

1
1

cos

tan

tan

 

Eqn 3 is   
M

W
A

F

W
B  

Eqn 4 is    
M

W
C

F

W
A  

Solving these two simultaneous equations gives : 
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
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3 This will also be useful when one comes to the Fedchenko suspension. 
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The force F and the moment M  are the force and the moment which arise when a pendulum rod is rotated 
through an angle  and displaced laterally a distance  while being pulled down by a force W.  That of course 
is just what happens firstly when the pendulum is moved by hand to start it, and then when it is subsequently 
acted upon by gravity. 

It is tempting to conclude from  and  that 
F

W

M

W
 and are linear functions of   and   and that we 

have a simple spring; but that is not correct as A,B and C are complex functions of W which in turn is a 
complicated function of   and time. 

Now is the time to expand part of that complexity. 

The dummy variables can be replaced by their values. Thus: 

F

W

pl
p pl

pl
l

pl

p
p pl


 

   

 (
cos

) ( tan )

(
cos

) (
tan

)( tan )

1
1

1
1 2

 

F

W

pl
p pl

pl
lp pl pl


 

  

 (
cos

) ( tan )

(
cos

) tan tan

1
1

1
1 2 2

     . 

M

W

pl
l

pl

p

pl
lp pl pl


  

  

 (
cos

) (
tan

)

(
cos

) tan tan

1
1

1
1 2 2

     . 
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And from  
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This is the equation of the elastic curve of a suspension spring with the tip deflected laterally a distance  
and rotated through an angle   with a vertically downward load of W applied at the tip. 

Numerical Example 

If we take a pendulum with a suspension-spring ½ inch long by ½ inch wide by five thou thick, 

I bd   1

12
1125 103 9. in4 

Wide beams, such as thin metallic strips, are more rigid  than simple engineer’s theory of bending 
suggests. It is usual to account for this effect by using E/(1-2)  where  is Poisson’s ratio, instead of the 

value of E tabulated for the material. If the spring is steel E  30 106 2 lbf / in  and  = 0.27 . Thus we 

use 32 4 106.   for E, and the bending stiffness of the spring is EI = 0.0364. 

If the pendulum exerts a force W equal to 15lbf,  then p
W

EI
pl  20 3 1015. . and  

If our spring is deflected so that  = -3 and   = 0.025in then substituting in equations 4 and 5 gives 
M = 0..00183inlbf and F = 0.82266lbf. These are the moment and the force which a typical pendulum exerts 
on a conventional suspension spring  at the end of the swing. A great deal of the apparently high stiffness is 
caused by the force W - say approximately the weight of the pendulum. This force reduces the bending 
moment and one must apply correspondingly larger F and M to achieve any specified deflection. 

Now W is not actually constant. The value of W, and the relationship between   and  , are actually 
determined by the dynamics of the pendulum’s swing.4 We do not know this relationship. The relevant 
differential equations have defied man for many years.  

                                                 
4  W is greater than the weight of the pendulum. It contributes part of the centripetal force which makes the 

bob swing in an arc. 



However we can illustrate the sort of thing which will happen.  Firstly, we can use a value for W that 
takes into account, approximately, the variation in W as the pendulum swings.  Appendix A sets out the 
standard derivation of the forces at the top of the theoretical compound pendulum. For the purposes of 
illustrating the behaviour of the spring we can use the vertical force Pc   to approximate W.  

Note in passing that the horizontal force at the top of the theoretical compound pendulum in Appendix A 
is  very much the same size as F calculated above. 

Secondly, we need to deal with the unknown relationship between  and  . The spring can adopt one of 
two sorts of shape. The first shape has a reflex bend, that is, there is a point of inflexion near the middle of 
the spring. The second, more simple, shape does not have a reflex bend. A simple sketch will show that if 
the absolute magnitude of   is less than l sin  then there will not be a reflex bend and vice versa.  We can 

see what shapes would be produced if the pendulum swung so that   
1

2
l sin   or  so that   2l sin  

. 

Figures 3 and 4 show the shape the spring can adopt as the pendulum swings from 0 to 3 
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Figure 3 Simple Bending 
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Figure 4 Reflex Bending 



 
Equation 2 also leads us to an expression for the projected length of the beam once it has been bent,  

because in the engineers’ theory of bending, the apparent shortening of the beam is given by: 

 l
dy

dx
dx

l






1

2

2

0
    

Now while we have  justifiably ignored the effect on bending moment caused by the axial stretching of 
the spring under tensile load, we cannot ignore the effect in comparison with l   

We can say x l
Wl

EAtip     where A is the cross sectional area of the spring 

That will give an expression for the vertical position, x coordinate, of the junction of the rod and the 
suspension-spring - albeit a rather messy expression. 

I do not propose to evaluate  x tip  in this paper. Suffice to say it is very small. 

 Forces and Moments on the Rod 

F, M and W are the forces exerted on the spring by the rod. If we wish to consider the motion of the rod 
we need to deal with the forces and moments exerted on the rod. These will be equal and opposite to F,  M 
and W.  To avoid confusion we introduce the forces R and P and the moment Q as shown in the following 
diagram.  

(Diagram to show R vertically up. P horizontally to left Q anticlock wise) 

Taking clockwise moments about the centre of the pendulum’s mass, we have. 

moments    PL RL Qcos sin   

Thus the moment tending to restore the angular displacement to zero  is : 

Restoring Moment = RL Q PLsin cos    

My reason for setting down this equation is to draw attention to what happens when the spring changes 
from bending simply to bending reflexively. With reflex bending P changes sign. There is a corresponding 
change in the restoring moment. I think the change in restoring moment acts so as to change the pendulum 
motion so that, after a short time the reflex bending no longer occurs.  I think also that if reflex bending 
could be made to happen continuously it could be a contribution to isochronism .This has some significance 
in considering Fedchenko’s suspension described in Appendix B. 

Instantaneous Centre of Motion 

In the past, considerable attention has been given to determining the “centre of swing” of the cantilever-
spring-pendulum. I am not sure why. That is, I am not completely sure what the authors intended to do with 
the answer; and I am even less sure that their purposes could have been validly served by the answers made 
possible by the methods used. 



Nevertheless, the instantaneous centre of motion is a valid concept and one commonly used in the 
analysis of mechanisms. At any particular instant, the total motion of a rigid body is equivalent to a rotation 
of the body as a whole about some point in space. Although it is possible to calculate the acceleration and 
velocity of a point in a mechanism analytically in some simple cases, more generally it is impractical and 
graphical methods are used. The instantaneous centre method lends itself to a graphical approach.   

If A and B are two points in a rigid body, then the instantaneous centre is located at the intersection of 
lines drawn through A and B respectively perpendicular to the velocity vectors of A and B. Figure 5 
illustrates the construction. The instantaneous centre is not a fixed point. Most usually it moves 
continuously.  

The utility of the instantaneous centre comes from the fact that the velocity of any point on the body is 
proportional to its distance from the instantaneous centre and has a direction perpendicular to the line joining 
the point to the instantaneous centre. (The constant of proportionality is the angular velocity of the body.) 
This means, for example, that knowing the instantaneous centre of  a pendulum rod, and its angular velocity, 
we could determine the velocity ( speed and direction) and thence the position  in space of the point on a 
pendulum rod where the crutch bears. The point being that it is the position of the crutch which actually 
“tells” the time. 

There is a useful connection between the velocities of points A and B.  The velocity of B is equal to the 
velocity of A plus the velocity of B relative to A  

ie V V Vb a ba    

We must also recognise that the body’s being rigid means A and B must not move further apart nor closer 
together. That means the component of the velocity of A along the line joining AB must always be the same 
as the component of the velocity of B along the same line. That is the same as saying the velocity of B 
relative to A must always be perpendicular to AB. 

 



A generalised presentation of the vector addition and the subsequent determination of the instantaneous 
centre is shown in Figure 6. To actually draw this diagram we need to know two of the three variables Va ,  

V Vb ba or .  5 

Suppose we allow the rigid body containing A and B to represent our pendulum, A at the tip of the 
suspension-spring and B at the centre of mass.  

From Fig 6 you will see that the smaller is Va  and the closer its direction is to being perpendicular to the 
rod, the nearer is the instantaneous centre to the extended centre line of the rod. Thus if the tip of the 
suspension-spring always moved perpendicular to the local surface of the spring the instantaneous centre 
would always lie on the extended centre line of the rod. If the spring behaved in such a way, the curves for 
constant  in Figure 4 would be straight lines. We can see that they are not straight lines and can conclude 
that the spring does not generally behave in that way, although it might be induced to do so in particular 
circumstances. So, the instantaneous centre of motion does not generally lie on the extended centre line of 
the rod.  The sort of thing we might expect in the simplest case is something like Figure 7. 

 

We have said that Vba  is perpendicular to AB. Because of our definition of , the angular velocity of the 

rod is 
d

dt


 and therefore Vba  L

d

dt


 where L is the distance between A and B. 

                                                 

5  An “acceleration centre” is also defined, using the fact that the acceleration of B relative to A is L
d

dt

2
2


 

perpendicular to the rod and L
d

dt





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2

 along the rod.  



For purpose of illustration it might be satisfactory to make some assumption about V V
d

dtb a or  or  


,  so 

that we could point to a “centre of swing”.  We could say for example that the vertical movement of the top 
of the rod is negligibly small. That point would then move in a horizontal straight line and the instantaneous 
centre would always be vertically above the top of the rod. But in reality such illustrations would be nothing 
more than  that - each an illustration of one feasible situation and not a true general statement about the 
position of the instantaneous centre. 

To find the instantaneous centre of the pendulum rod we might now proceed to differentiate x ytp tip and   

with respect to time so as to obtain Va , finding 
d

dt


 on the way from the dynamics.  The relevant equations 

are equations 7 and 8.  My wife Gay, who painstakingly checked all my algebra,  expanded equation 7 so 
that we could see what we have to differentiate with respect to time - remembering that this would give just 
the vertical component of the velocity of the top of the rod.   The resulting equation  9 is: 
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The prospect is more than daunting. Mathematicians say  “A problem worthy of attack, Proves its worth 

by fighting back.”  I’m not sure the converse is true. 

Dynamics 

The real question for time-keeping is how does the displacement of the crutch, or the  gathering pallet, 
vary with time. This is the same as  asking how does the position of a particular point on the rod vary with 
time. That is quite a different proposition from calculating the period of a harmonic motion.  

Like any other rigid body, the motion of the pendulum can be treated as a rotation about its centre of 
mass together with a translational motion of the centre of mass. 

Before we can write down the differential equations for the motion of the pendulum we need to know the 
position of the instantaneous centre. The reason is that we need a value for the force W.  This force is not 
just the weight of the pendulum, because W, in conjunction with F, provides the centripetal force which 
causes the pendulum bob to move along a more or less circular path. Now although the centripetal 
acceleration is small, we are not entitled to ignore it. After all, the equation of motion for the simple 
pendulum is derived entirely from the expression for centripetal force. To evaluate the centripetal force we 
need to know the distance from the centre of mass to the instantaneous centre about which the pendulum is 
rotating so we need an expression for the position of the instantaneous centre. 

If we were to try to use energy methods we face the same problem. To evaluate the translational kinetic 
energy of the pendulum we need to know the velocity of the centre of mass and that means we need to know 
the position of instantaneous centre of rotation.  Even if we were to treat the vertical motion of the tip of the 
suspension spring as negligible, the subsequent algebraic complexity would be horrendous. I have examined 
the problem from many angles and I believe we are snookered by the algebraic complexity. 

However, having made that examination, I can see that the motion is going to be described by two 
simultaneous differential equations with a peculiar characteristic.  To illustrate, recall that the method of 



construction makes the  end of the spring align with the pendulum rod and  coincides with the rotation of 
the rod about its centre of mass clockwise from the vertical. Call the horizontal displacement of the centre of 
mass Y  and the distance from the top of the rod to the centre of mass L. Theta and Y will be functions of 
time.  

The equations will be of the general form 

C C C Y1 2 3
      for the rotation, and 

C Y C Y C4 5 6
      for the lateral translation. 

The solution of each of these equations  would represent the superposition of two harmonic oscillations. 
The two frequencies would be the natural frequency given by the left hand side of the equation and the 
forcing frequency given by the right hand side. The peculiar characteristic is that the rotational motion is 
forced by the translational motion, and the translational motion is forced by the rotational motion.  If there is 
any damping present , and this is always so even though it is not shown in this analysis, the natural 
frequencies will be transient and will decay and the frequencies of oscillation will be that of the forcing 
functions. I think this means that in the long run the pendulum will swing so that the rotational and 
translational motions have the same frequency and the same phase. But if the pendulum is disturbed, by say 
an impulse, the transient frequencies will again appear. 

Real engineering analysis can seldom be uncompromisingly precise. 

 

   A.J. Emmerson, Canberra, 1998 

 



Appendix A 

REACTIONS AT THE PIVOT OF THE  THEORETICAL COMPOUND PENDULUM 

(Diagram to show forces on rod at top  are N along rod upwards T perpendicular to rod and to left.) 

Because the upper end of the pendulum rod, point O, is fixed in space, we have, considering the angular 
and centripetal accelerations of the pendulum: 

N mg mh cos   2         

T mg mh sin           

Angular momentum principle, with Io as the mass moment of inertia about O, gives: 

I mgho
 sin           

Considering conservation of mechanical energy; if amplitude   then    when       0   

1

2
2I mgho
 (cos cos )   

       

From  and , recognising that 
m

I ko


1

2  where k is the radius of gyration of the pendulum about O: 
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2

2

2

2       

 

From  and  

T

mg

h

k
 ( ) sin1

2

2          

Translating these radial and transverse forces into vertical and horizontal forces we get: 

Vertically upwards: 

P T Nc  cos sin   

Horizontally to left: 

R T Nc  sin cos   



Where T and N are given by  and . 

The forces Pc and Rc are the forces which must be applied to a compound pendulum at the point about 
which it pivots if that point is to remain fixed in space.   

They are not the forces at the top of the pendulum rod attached to a cantilever spring suspension, because 
the top of that pendulum is moving. However they should be about the same size as the forces on the 
cantilever pendulum because the top of the rod doesn’t move much. 

Numerical Example 

If we take a seconds pendulum of total weight 15lbf with h= 38in  and amplitude 5, we find that: 

Pc = 0.765lbf and  

Rc = 15.03lbf 

 



Appendix B 

FEDCHENKO’S SUSPENSION 

F.M. Fedchenko’s arrangement of the suspension is an assembly of three coplanar parallel springs 
disposed symmetrically  about the centre line of the pendulum rod. The two outer springs are identical and 
their flexure length is much shorter than that of the middle spring.  The sketch below is  based on data from 
George Feinstein6 and on a general arrangement sketch by John W. Wood 7. The clamping method I have 
drawn is somewhat conjectural. The method was perhaps changed from one model to the next. But that is 
not material here. 

The bending stiffness of the two outer springs can be represented by a single spring having  twice the 
width. The forces and the moment acting on the suspension are shared by the springs according to the 
principle of strain compatibility. The equation for the elastic curves of these springs should show that there 
is a restoring torque  which varies in a way that is close to that for isochronism, as Fedchenko demonstrated 
in practice.  

                                                 
6 Feinstein G. AChF-3 Isochronous Suspension, Horological Science Newsletter, 1997-3 pp 13 et seq 

7 Wood J.W. in Britten F.J. and Goode R. ed Britten’s Watch and Clock Makers Handbook Dictionary and 
Guide 16th Edition Bloomsbury Books, London 1978 p243 



 

 

 

 


