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A Water Clock, or clepsydra, (a Greek word meaning water thief, [13]) is a device that 
uses the flow of water under gravity to measure time.  Water flows either into, or out of, a 
vessel, and the height of the water in the vessel is a one-to-one function of time from the 
beginning of the flow.   
 
Water clocks were important practical timekeeping devices in the ancient world.  Several 
variations on the basic mechanism were used.  Over the course of the history of water 
clocks, horologists—experts in the science of timekeeping—exhibited considerable 
ingenuity in improving their operation.  In this paper, we will use tools that these 
innovators did not have—calculus and computers—to analyze and understand the 
operation of certain water clocks.  We will begin with a brief outline of the types of water 
clocks and their history. 
 
The simplest type of water clock, called an outflow clepsydra, measured time by the 
height of the water in a vessel that water flowed out of [see Fig. 1].   
 

 
Figure 1.  Simple outflow clepsydra 

 
One of the oldest extant water clocks is an outflow clepsydra that was found in the tomb 
of the Egyptian pharaoh Amniotes I, who was buried around 1500 B.C.E.  This discovery 
supports the claim of the ancient Greek historian Herodotus, who lived around 484-425 
B.C.E., and who attributes the invention of the water clock to the Egyptians. 
 



In another variation, the inflow clepsydra, time was measured by the height of the water 
in a vessel that water flowed into [Fig. 2.].   

 
Figure 2.  Simple inflow clepsydra 

 
 
Inflow clepsydrae were in use in the Greek empire by the third century B.C.E.  Ctesibios 
of Alexandria, who lived around 300-230 B.C.E., helped to develop this type of water 
clock, and may have invented it [10].  Ctesibios and other engineers of his day were the 
first to work on the problem that we will consider in this paper, the fact that the flow rate 
of water from a vessel depends on the height of the water in the vessel, so that this rate 
changes as the vessel drains.  Their solution to the problem is shown in Fig. 3.   



 
Figure 3.  Inflow clepsydra with overflow tank. 

 
 
The middle vessel in the configuration shown in Fig. 3 is called an overflow tank.  It has a 
hole near its top to regulate the level of water; if the level of the water in that tank is 
constant, then the flow out the bottom of the tank is constant.  A disadvantage of this 
scheme is that it wastes water.  We shall not present a mathematical model of this 
configuration, but the situation is an interesting one to model, and to derive a model 
requires only the calculus and fluid mechanics tools that we shall discuss below. Also, 
this model has some interesting mathematical structure. 
 



Another solution to the problem of variable flow rate, one that does not waste water, uses 
a float in the overflow tank that acts as a stopcock.  It prevents the inflow of water when 
the level rises, and permits inflow when the water level in the overflow tank falls.  Such a 
design is attributed to Ctesibios, who in consequence is considered the first builder of a 
system with feedback control [4]. 
 
While we are advertising modeling exercises based on clepsydrae, we should mention a 
variation of the inflow clepsydra, the sinking bowl clepsydra [Fig. 4].  In such a water 
clock, a bowl with a  
 

 
 
 

Figure 4.  Sinking bowl clepsydra 
 
hole in it is placed on the surface of water.  It fills slowly and eventually sinks; the 
duration of its floating is taken as a unit of time.  The sinking-bowl water clock seems to 
have been invented in India around 400 A.D. [10] 
 
Inflow clepsydrae appeared in China during the Han dynasty (206 B.C.-A.D. 8), soon 
after the time of Ctesibios, though there is no known connection.  Tan Zheng produced 
inflow clepsydra that survived for a millennium, and which were drawn and described in 
the 11th century A.D. [10] Chinese engineers also struggled with the problem of keeping 
the flow uniform.  One of their solutions was the polyvascular inflow clepsydra, which is 
the type of water clock that we shall consider mathematically in this paper. One is shown 
schematically in Fig. 5 



 
Figure 5.  Polyvascular clepsydra 

 
 
In a polyvascular clepsydra, a series of vessels drain successively into one another.  The 
modeling exercise we undertook was to describe such clepsydra mathematically, and to 
use the mathematical model to understand how and why the work; that is, how they 
produce a constant flow rate from the final vessel. 
 
 



Lest the reader think that the use of water clocks ended in the first millennium, we note 
that Galileo used a water clock in his studies of mechanics.  According to MacLachlan 
[3], Galileo “measured time by weighing water that flowed out of a narrow tube at the 
bottom of a bucket…Although primitive in structure, this is a quite accurate clock.” 
 
 
 
The mathematical model 
 
 
We take the polyvascular clepsydra to consist of N vessels, each of which is a right 
circular cylinder of height 1.  We also take them all to be identical, and to be full initially.  
They drain through holes or nozzles in their bases.  Vessel 1 drains into vessel 2, which 
drains into vessel 3, and so on.  For the sake of having a complete story, we can think of 
there being an N+1st vessel into which the Nth vessel drains; the depth of water in this 
N+1st vessel, which is initially empty, is used to measure time.  The goal is to have the 
water rise in this vessel at a constant rate. 
 
We shall let ( )jy t be the height of the water in the jth vessel at time t. 
 
The outflow rate from a vessel will be a function of the pressure at the bottom of that 
vessel, that is, the pressure at the point where the water leaves the vessel.  More 
specifically, since it is atmospheric pressure that is resisting the flow of the water out of 
the vessel, the outflow rate will be a function of the increase in pressure over atmospheric 
pressure. To simplify notation, we take atmospheric pressure to be 0.  Then the pressure 
in the vessel is hydrostatic pressure [11, chapter 40].  This means that the pressure at a 
depth h below the surface of the water is ghρ , where ρ is the density of water and g is 
the acceleration of gravity; the pressure at any depth is simply the force per unit area that 
is required to carry the weight the fluid above that depth. 
 
The last, and most complex, modeling issue is whether the water experiences significant 
viscous drag as it flows out of the vessels.  We will treat both of these cases: the case in 
which viscous drag is negligible, and the case in which it is dominant. 
 
Viscosity will dominate the outflow rate if the water flows out through a nozzle that is 
sufficiently long and thin.  A precise mathematical definition of the requisite dimensions 
can be made in terms of the Reynolds number [11, chapter 41].  But for our purposes a 
simple physical explanation should suffice.  If the nozzle is sufficiently short, water that 
enters the nozzle with some momentum will not have much of its momentum dissipated 
by viscous drag during its short trip through the nozzle.  Viscous drag is caused by the 
water’s sticking to the walls of the nozzle, and if there is not a long wall, there is not 
much viscous dissipation.   If the nozzle is so long that all of the entering water’s 
momentum is dissipated by viscous drag, then we are in a situation in which viscosity 
dominates the flow.   The diameter of the nozzle will also affect the dissipation of the 
water’s momentum; since the dissipation is caused by the water’s sticking to the wall of 



the nozzle, there will be more dissipation in a thin nozzle because the surface area to 
volume ratio—the amount of wall per unit water—will be larger.   
 
In cases in which viscosity dominates, the outflow rate is related to the pressure at the 
bottom of the vessel by Poisseille’s Law, 
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Here, Q is the outflow rate in units of volume per unit time, P  is the pressure, µ is the 
viscosity, which has units of mass per unit length per unit time, and r  and L  are the 
radius and the length of the nozzle, respectively.  If we substitute the expression for the 
hydrostatic pressure for P in this formula, we find that in the case in which viscosity 
dominates the outflow, the outflow rate from the jth vessel  
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If the outflow nozzle is sufficiently wide and short—for example, if it is just a hole—then 
viscosity should be negligible.  In this case, the outflow rate is given by Torricelli’s Law 
[9], which is based on Bernoulli’s Law.  When viscosity dominates the flow, the fluid 
never builds up significant momentum.  But when viscosity is negligible, pressure 
differences in the fluid can accelerate the fluid significantly.  The work done by gravity, 
and by the pressure gradient, in accelerating the water turns into kinetic energy.  This 
conservation of energy is expressed by Bernoulli’s Law [11, chapt. 40]: 

2 ( ) 0
2 jv P g y y
ρ

ρ+ + − =  

Here, v is the speed of the water and y is the distance from the bottom in the jth vessel.   
 
At the bottom of the vessel, at the outflow nozzle, we have 0P =  because the pressure is 
the atmospheric pressure, and 0y = , so Bernoulli’s Law gives us 

2 2 jv gy=  
or  

2 jv gy=  

This is the magnitude of the velocity, which may not be directed straight out of the 
nozzle; this will affect the net outflow rate, which will also depend on the area of the 
nozzle.  We would have to do some more detailed physics to account for these effects 
precisely, but in any case we will have  
 

jQ c y=                                                           (2) 

 
where c  is a positive constant.  With Eqs. (1) and (2) in hand we are ready to write down 
the equations of our model.  The basic law is the conservation of mass: the rate at which 
the volume of water in the vessel decreases is equal to the rate at which water flows out 



less the rate at which it flows into the vessel.  No water flows into the first vessel, so the 
equation, in the viscosity-dominated case, is 
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where A is the cross-sectional area of the vessel.  We re-scale the time so that this 
equation becomes 

1
1
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dy t
y t
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= −  

 
Water flows both into and out of all of the other vessels, apart from vessel (N+1).  The 
rate at which water flows into the jth vessel is exactly the rate at which it flows out of the 
j-1st vessel, so we have  
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for 2 j N≤ ≤ .  Since we assume that all of the vessels are initially full, and that they all 
have unit height and unit volume, our full set of equations is: 
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Viscosity-Dominated Case 
 

By using the same reasoning along with Eq. (2), we obtain the equations for the inviscid 
case, (here again, we have re-scaled time in order to eliminate an unimportant constant), 
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Invsicid Case 
 

 
 
 
 
 



Analysis of the viscosity-dominated case 
 
The viscosity-dominated case, which is described by Eqs. (3), provides a nice exercise in 
the use of exponential functions and in the application of the method of variation of 
parameters [9, 12].  What is more interesting is that the solution, interpreted in the 
context of our water clock problem, provides insight into the nature of Taylor 
polynomials [9] in general, and into the structure of Taylor approximations of 
exponential functions in particular. 
 
The first equation in Eqs. (3) can be solved simply; its solution is the exponential 
function 

1( ) ty t e−=   
 

The next equation, the equation for 2 ( )y t , can then be regarded as an inhomogeneous 
equation whose inhomogeneous term is the known function 1( )y t  
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This equation can be solved by variation of parameters.  In this method, one first finds the 

general solution to the homogeneous equation, which in this case is 2
2
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= − , 

whose general solution is 2 ( ) ty t eσ −= , where σ is an arbitrary constant.  One then treats 
the constant as a function of t , 2 ( ) ( ) ty t t eσ −= , and plugs this expression into the 
inhomogeneous equation.  In this case, we obtain 
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or, by applying the product rule, 
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When we cancel the term ( ) tt eσ −− , this yields 
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Here, we have used the initial condition 2 (0) 1y =  to determine that (0) 1σ = .  So we 
have 

2 ( ) ( ) (1 )t ty t t e t eσ − −= = +  
 
We can repeat this procedure for 3,4,...j = .  We find that 
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This proves, by induction, that 
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Thus, we have an explicit solution of the system of equations (3). 
 
The formula in Eq. (5) shows ( )jy t to be the product of te− and the jth Taylor polynomial 

of te , 
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.  This suggests an approach to analyzing this solution.  We can 
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Now, the original question that we set out to address was how nearly constant the flow 
from the Nth  vessel is, and for how long; making this flow rate constant was the purpose 
of the polyvascular clepsydra.  The flow rate out of the Nth  vessel will be constant if 

( )Ny t is constant. That is, since ( )Ny t  is initially equal to 1, the flow rate will be nearly 

constant as long as ( )Ny t is approximately equal to 1, that is, as long as 
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The expression 
!

k

k N

t
k

∞

=
∑  is the error associated with the Nth  order Taylor approximation of 

te , so we know by Taylor’s theorem [9] that 0
! !

k t N

k N

t e t
k N

∞

=

≤ ≤∑ . (This is actually a crude 

estimate, in this case, unless N and t are small.)  This means that ( ) 1
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following lemma gives us an estimate of how long ( )Ny t remains close to 1.  This lemma 
will also provide a crucial estimate in the inviscid case. 
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Thus 
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By exponentiating, we obtain 
 

1
1 1

log( ) 1
( !)

NN
N N Ne N

N e
e e

− +
≥ = >  

n  
 
 
Suppose, for example, that we want to know when ( ) .9Ny t = .  Since this occurs after the 

time at which .1
!

Nt
N

= , LEMMA 1 tells us that it occurs after time 
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This crude estimate tells us that our model has, at least, a basic qualitative feature that we 
expect from our water clock: the drainage time from an N-vessel clock is essentially 
linear in N.  We can obtain a better estimate by using a more precise approximation for 

the error term, 
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∑ , in the Taylor approximation.  We leave this as an exercise for 

interested readers. 
 

  



Analysis of the Inviscid Case 
 

The first equation in the inviscid model, 1
1
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( )
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y t

dt
= − , with initial condition 

1(0) 1y = , can be solved in closed form by direct integration to obtain 2
1( ) (1 )

2
t

y t = − .  

However, since the system of equations (4) is not linear, the variation of parameters 
method does not work to get us solutions of the rest of the equations as it did in the 
viscosity-dominated case.  As best we can tell, it is impossible to integrate the equations 
for ( ), 1jy t j > , in closed form.  We must resort to estimates and numerical solutions. 
 
Note that solutions of the inviscid model actually reach 0; the vessels drain completely in 
finite time.  The inviscid model differs in this feature from the viscosity-dominated 
model, in which the height of water in each vessel approached zero only 
asymptotically—the vessels never drained completely.  This is, to put it perhaps a bit 

tersely, because the improper integral 
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vessel drains in the invsicid model, converges, whereas the analogous integral for the 

viscosity-dominated model, 
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Because 1( ) 0y t ≡  for 2t ≥ , it follows that 2 ( )y t has the form 2
2 ( ) ( )

2 2
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y t = − for some 

constant 2A > , from time 2t =  until time t A= , after which time 2 ( ) 0y t ≡  .  And, so 
on, for 3,4,...j = .  This is an interesting fact, but we have not found it useful. 
 
We start with the results of our numerical solution of Eqs. (4). These are shown in Fig. 6. 
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Figure 6.  Numerical solution of Eqs. (4) 
 
 



We begin our analysis with another lemma: 
 
LEMMA 2:  For all 1j ≥ , there is a time 0jt >  such that ( ) 0jy t > for 0 jt t≤ < and 

( ) 0jy t ≡ for jt t≥ , and 1j jt t+ > .  For all 1j ≥ , and for all 0t >  1( ) ( )j jy t y t+ ≥ , and the 

inequality is strict if  jt t≤ . 
 

Proof: If follows from Eq. (4) by direct integration that  
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In the general case, for 2j ≥ , 

1 1
1 1 1

1

( )
( ) ( ) ( )j j j j

j j j j j j
j j

d y y y y
y y y y y y

dt y y
+ +

+ − −
+

 − −
 = − + − = + −
 + 

.  So, by 

the variation of parameters formula [9], 

( )1 10 0
( ) ( ) ( ) ( )

1 1
0

( ) ( )

t

j j j j

ds dst
y s y s y s y s

j j j jy y e e y y d

τ

τ τ τ+ +
−

+ +
+ −

∫ ∫
− = −∫ .  Thus, if 1j jy y −>  for 

0 jt t< ≤ , then 1j jy y+ >  for 0 jt t< ≤ .  For jt t>  , 1
1

j
J

dy
y

dt
+

+= − , so 

( ) ( )

( )

2
2 2

1 1

1

2

1

( ) 2 ( )
2( )

0 2 ( )

j
j j j j j j

j

j j j

t t
y t t t t y t

y t

t y t t

+ +

+

+

 −   − ≤ < +  =   


+ <

 so ( )2

1 12 ( )j j j jt t y t+ += + . 

The result now follows by induction. 
 

n  
 



COROLLARY.  For all 1j ≥ , ( )jy t is a strictly decreasing function for 0 jt t< < . 
 

Proof:  This now follows directly from Eq. (4): 1
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A Simple Estimate 
 
There is a simple estimate that has the form we are seeking:  By adding the first 
j equations we obtain 1 2 1 2( ... ) ' ...j j jy y y y y y y+ + = − ≥ − + + .  By integrating both 
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This means that ( ) 0jy t ≥  for 2t j< .    
 
This does show that we can make the drainage time for the polyvascular clepsydra as 
long as we like by using a sufficiently large number of vessels.  But our numerical results 
suggest that ( ) 0jy t ≥ until  t ~ 1j + , so the estimate 2 j  is a very crude lower bound for 
large values of j . 
 
A Better Estimate: The Right Order in n 
 
We can get a much better estimate with just a little bit of hard analysis.  We let  
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This fact suggested the content of the following theorem. 
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We will prove this theorem below.  First, we state its important corollary, which is the 
result in which we are interested: it says that the time at which the jth  vessel becomes 
empty is linear in j. 



 

COROLLARY.  The function ( ) 0jy t >  for 
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This estimate shows the time at which the jth vessel drains to be linear in j, which is what 

we expect.  We can see from our numerical results that the factor of 
2

.736...
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= .is 

pessimistic; we should be able to replace it with a factor of 1.  The question of how to 
derive an estimate with such a factor remains open. 
 
We shall now prove the theorem.  For simplicity, we shall first prove another lemma. 
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Proof of the Theorem.   
 

In terms of ( )j tθ  we can rephrase the conclusion of the theorem as that ( )
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and the associated initial conditions are (0) 0j jθ = ∀  .We know by LEMMA 2 that 
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A Conjecture based on Numerical Results 
 
In the previous section we showed that the jth vessel does not drain until a time later than 
2 j
e

 and we noted that this estimate seems pessimistic in light of the numerical results 

that we presented in Fig. 6.  Those results, which we obtained with a simple Euler 
integration and a very small step size, suggest that the jth vessel does not drain until a 
time between j+1 and j+2. 
 
We tried to fit curves of various forms to these numerical solutions.  The most interesting 
of the results that we obtained are shown in Fig. 7.  In that figure, we have graphed our  
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Figure 7.  Numerical solution (solid curves) and conjectured 

 approximate solutions 2(1 ( ) )
1

jt
j

−
+

(dotted curves) 

numerical solutions as solid curves, along with the functions 2(1 ( ) )
1

jt
j

−
+

, whose graphs 

are shown as dotted curves.  We can see in the figure that 2( ) (1 ( ) )
1

j
j

t
y t

j
≈ −

+
.  In fact, 

the functions 2(1 ( ) )
1

jt
j

−
+

 fit the solutions of the ODE system quite well. 

 

However, except for the case 1j = , ( )jy t is not identically equal to 2(1 ( ) )
1

jt
j

−
+

.  Our 

conjecture, based on Fig. 7, is that we can define a rigorous sense in 

which 2( ) (1 ( ) )
1

j
j

t
y t

j
− −

+
is small, that is, a rigorous sense in which the functions 

2(1 ( ) )
1

jt
j

−
+

 are approximate solutions of the ODE system (4).    

 
 
A differential-delay equation for the asymptotic profile 
 
Our numerical solutions support the common-sense conjecture that the functions 

( )jy t approach shifted versions of the same function as j becomes large.  That is, it 
appears that there is a function ( )Y t such that 
 
 
 
 
 
 ( ) 1lim

t

Y t
→−∞

=

( )
( 1) ( )

dY t
Y t Y t

dt
= − −



 
Such that ( ) ( )jy t Y t j= + .  Here, we have hypothesized not only the form of this 
differential-delay equation, but that the delay is 1; we base this aspect of the conjecture 
on our numerical results.   More generally we might conjecture that the function ( )Y t  

satisfies an equation of the form 
( )

( ) ( )
dY t

Y t Y t
dt

τ= − − , for some delay τ  that may 

not equal 1. 
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